Entropy-based intuitionistic fuzzy least squares twin support vector machine for class imbalance learning

作者
Guocheng Wei,Jialiang Xie,Jianxiang Qiu
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:18 (4): 632-660
标识
DOI:10.1108/ijicc-05-2025-0270
摘要

Purpose Support vector machine (SVM) and twin support vector machine (TSVM) are plane-based classifiers that perform well on balanced datasets. However, their performance significantly degrades on imbalanced datasets due to their limited ability to model class proportions, noise, and outliers. To address this issue, this paper proposes an entropy-based intuitionistic fuzzy least squares twin support vector machine for class imbalance learning (EIFLSTSVM-CIL). Design/methodology/approach This study proposes a class imbalance learning method that embeds entropy-driven intuitionistic fuzzy modeling into the least squares twin support vector machine framework. Specifically, each sample is assigned the degrees of membership and nonmembership by jointly considering its spatial distribution in the feature space and the uncertainty of its class association measured by information entropy. In addition, sample weights are adjusted based on the global imbalance ratio, which enhances the penalization of majority class outliers and noisy instances. The proposed method is evaluated on 21 synthetic datasets and 35 real-world benchmark datasets with varying imbalance ratios. Findings Experimental results on 21 synthetic datasets and 35 real-world datasets demonstrate that EIFLSTSVM-CIL exhibits superior robustness and generalization performance in imbalanced scenarios, showing a significant advantage over classical models. Originality/value This study enhances the twin least squares SVM by jointly incorporating entropy-based intuitionistic fuzzy modeling and class-imbalance weighting. The proposed approach integrates both aspects in a unified framework, improving robustness and generalization on imbalanced data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjsu_zpz完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI6应助cc采纳,获得30
3秒前
paz_1010完成签到,获得积分10
3秒前
李木头完成签到,获得积分10
4秒前
7秒前
7秒前
8秒前
shujing完成签到 ,获得积分10
9秒前
小李完成签到,获得积分10
10秒前
长情胡萝卜完成签到 ,获得积分20
12秒前
科研通AI2S应助Lesley采纳,获得10
12秒前
肥喵发布了新的文献求助10
12秒前
维维完成签到,获得积分10
12秒前
13秒前
13秒前
颖火虫发布了新的文献求助10
14秒前
15秒前
17秒前
gushang强发布了新的文献求助20
18秒前
深情安青应助邹帅采纳,获得10
18秒前
snwnqi发布了新的文献求助10
19秒前
20秒前
22秒前
深情安青应助椒盐采纳,获得10
23秒前
serpiero完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
odanfeonq发布了新的文献求助20
25秒前
czzlancer完成签到,获得积分10
25秒前
ZHU完成签到,获得积分10
25秒前
snwnqi完成签到,获得积分10
27秒前
27秒前
27秒前
27秒前
SciGPT应助vercoi采纳,获得10
28秒前
打打应助小燕子采纳,获得10
28秒前
111111发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5363845
求助须知:如何正确求助?哪些是违规求助? 4493319
关于积分的说明 13989766
捐赠科研通 4396934
什么是DOI,文献DOI怎么找? 2415259
邀请新用户注册赠送积分活动 1407968
关于科研通互助平台的介绍 1382865