亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simplified and Accurate Approach to Sleep Disorder Prediction Using Body Composition Metrics: A Development and Validation Study

睡眠(系统调用) 计算机科学 操作系统
作者
Olive R. Cawiding,Heewon Bae,Jee Hyun Kim,Eun Yeon Joo,Jae Kyoung Kim
出处
期刊:Sleep [Oxford University Press]
标识
DOI:10.1093/sleep/zsaf312
摘要

Abstract Predicting the risk of sleep disorders such as insomnia, obstructive sleep apnea (OSA), and comorbid insomnia and sleep apnea (COMISA) typically requires costly and time-consuming assessments. The SLEEPS algorithm simplifies this process using only nine questions, including body mass index (BMI). However, BMI alone cannot capture differences in body composition, as individuals with the same BMI may have different muscle and fat distribution. This study aims to improve sleep disorder prediction by incorporating body composition metrics. To achieve this, we applied a tree-based machine learning algorithm to a dataset of 3,291 patients, evaluating demographic data, sleep-related questions, and body composition metrics as potential features for the model. The final feature selection was performed using Shapley additive explanations (SHAP) method. The resulting model, I-SLEEPS (InBody-based SimpLE quEstionnairE Predicting Sleep disorders), used a total of 10 features, including skeletal muscle index (SMI) and fat-free mass index (FFMI) instead of BMI, along with the original SLEEPS questionnaire items. I-SLEEPS achieved superior predictive accuracy (AUROC > 0.93 for insomnia, OSA, and COMISA) compared to SLEEPS (AUROC > 0.90). Additionally, our approach significantly enhanced area under the precision-recall curve (AUPRC) values, which is critical for addressing the imbalanced datasets of insomnia and COMISA. Furthermore, our analysis revealed distinct relationships between muscle mass indices (SMI and FFMI) and the risks of insomnia, OSA, and COMISA, providing new insights into the role of body composition in sleep disorders. By leveraging InBody analysis, I-SLEEPS offers a practical, non-invasive alternative to traditional screening methods such as polysomnography.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长给叮叮车的求助进行了留言
9秒前
芝麻完成签到,获得积分10
10秒前
15秒前
16秒前
20秒前
Santas发布了新的文献求助10
24秒前
莎akkk发布了新的文献求助10
25秒前
46秒前
53秒前
馆长给纯银耳坠y的求助进行了留言
1分钟前
1分钟前
ming完成签到,获得积分10
1分钟前
1分钟前
馆长给HMMXC的求助进行了留言
1分钟前
1分钟前
烈酒一醉方休完成签到 ,获得积分10
1分钟前
ming发布了新的文献求助10
1分钟前
1分钟前
loveei发布了新的文献求助10
2分钟前
馆长举报xuanxuan求助涉嫌违规
2分钟前
2分钟前
貔貅完成签到 ,获得积分10
2分钟前
馆长给勤奋的不斜的求助进行了留言
2分钟前
2分钟前
希望天下0贩的0应助Santas采纳,获得10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
3分钟前
馆长给优秀的幻波的求助进行了留言
3分钟前
3分钟前
3分钟前
莎akkk发布了新的文献求助10
3分钟前
sino-ft完成签到,获得积分10
3分钟前
3分钟前
莎akkk完成签到,获得积分10
3分钟前
馆长举报cathyfly1006求助涉嫌违规
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834480
求助须知:如何正确求助?哪些是违规求助? 4138311
关于积分的说明 12808254
捐赠科研通 3882071
什么是DOI,文献DOI怎么找? 2135015
邀请新用户注册赠送积分活动 1155046
关于科研通互助平台的介绍 1054277