Constructing and Visualizing Models using Mime-based Machine-learning Framework

计算机科学 人机交互 人工智能 计算生物学 生物
作者
H. B. Liu,Weidong Zhang,Yihao Zhang,Xiaojing Li,Siyi Wanggou
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (221)
标识
DOI:10.3791/68553
摘要

The widespread high-throughput sequencing technology has significantly enhanced our understanding of biology and cancer heterogeneity. Machine learning algorithms on transcriptional data have become vital for predicting patient prognosis and clinical responses. Despite advancements in machine learning algorithms, an open-source platform that incorporates the most sophisticated machine learning algorithms on transcriptional data remains absent. To address this gap, we developed Mime, a versatile machine-learning framework to enhance the construction and visualization of predictive models for clinical characteristics and gene signatures. By integrating diverse datasets and employing the most advanced feature selection techniques, Mime addresses critical challenges in clinical predictions. It provides three main functions, including model construction, feature selection, and data visualization. Model construction encompasses a range of machine learning algorithms, including but not limited to decision trees, support vector machines, and ensemble methods, allowing researchers to select the best-fitted approach for their specific analysis. Feature selection utilizes advanced algorithms such as Recursive Feature Elimination and LASSO regression to streamline the dataset and focus on the most informative features. The framework supports customizable parameter tuning through cross-validation methods, optimizing model performance while mitigating overfitting risks. Visualization tools integrated within Mime enable researchers to interpret model outcomes effectively, providing graphical representations of feature importance and predictive performance metrics. In this manuscript, we provide a detailed tutorial on the stepwise procedures of this versatile machine-learning framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill应助科研通管家采纳,获得20
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
xiaolei001应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
tuanheqi应助科研通管家采纳,获得150
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
xiaolei001应助科研通管家采纳,获得20
1秒前
小罗应助科研通管家采纳,获得100
1秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
tuanheqi应助科研通管家采纳,获得150
2秒前
4秒前
包容夕阳发布了新的文献求助10
4秒前
zy驳回了大模型应助
5秒前
SciGPT应助潘趣酒采纳,获得10
5秒前
黄卓666发布了新的文献求助10
6秒前
壮观的抽屉完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
狂野的衬衫完成签到,获得积分10
8秒前
11秒前
111发布了新的文献求助10
13秒前
momo发布了新的文献求助20
13秒前
Lky发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
17秒前
上官若男应助阿托品采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970590
求助须知:如何正确求助?哪些是违规求助? 4227140
关于积分的说明 13165827
捐赠科研通 4015090
什么是DOI,文献DOI怎么找? 2197110
邀请新用户注册赠送积分活动 1210017
关于科研通互助平台的介绍 1124374