A single-sensor multi-scale quality monitoring methodology for laser-directed energy deposition: Example with height instability and porosity monitoring in additive manufacturing of ceramic thin-walled parts

微尺度化学 中尺度气象学 材料科学 多孔性 沉积(地质) 数据采集 陶瓷 比例(比率) 机械工程 计算机科学 人工智能 复合材料 工程类 古生物学 数学教育 数学 物理 气候学 量子力学 沉积物 生物 地质学 操作系统
作者
Bin Li,Yi Zhang,Yuchao Lei,Huifeng Wei,Cong Chen,Liu Fu,Penghui Zhao,Kanyan Wang
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:79: 103923-103923
标识
DOI:10.1016/j.addma.2023.103923
摘要

Laser Additive Manufacturing (LAM) faces various technical challenges, encompassing issues with dimensional accuracy, mechanical properties, and processing-related defects, such as surface roughness, cracking, and residual porosity. Currently, the quality of safety-critical parts produced by LAM processes, which is still improved through trial-and-error adjustments of multiple process variables, have limited real-time monitoring capabilities. This study introduces an innovative method for real-time quality assessment of laser-directed energy deposition (LDED) procedures across multiple scales (macroscale, mesoscale, and microscale) utilizing a single sensor. This approach is founded on two fundamental components: the single-sensor system for data acquisition and the algorithm for simultaneous multi-scale quality monitoring. For the data acquisition system aspect, a single-sensor, high dynamic range (HDR), multi-scale information acquisition system has been developed to mitigate intense radiation, eliminate plume disturbances, and rectifies backlight shadows, facilitating clearer images of deposition contours and the molten pool region. In the realm of data monitoring algorithms, a physics model-driven supervisory algorithm is employed to enable monitoring of contour height instability, while a convolutional neural network (CNN), driven by image data, is utilized for porosity prediction. Then, this algorithm adeptly tackles the challenge of simultaneously monitoring macroscopic contour and mesoscale porosity. Regarding the validation of the method, the outcomes of single-sensor multi-scale quality monitoring in additive manufacturing of ceramic thin-wall parts indicate a 100% recognition rate for deposition contour and molten pools, contour feature recognition with a relative error of under 0.05%, porosity prediction accuracy surpassing 99%, and a monitoring time of 80.4 ms per frame. Single-sensor multi-scale real-time quality monitoring can serve as a methodological support for future real-time quality control in LDED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
6秒前
laura完成签到,获得积分10
6秒前
领导范儿应助柴胡采纳,获得10
8秒前
8秒前
8秒前
9秒前
jenningseastera应助SZY采纳,获得10
9秒前
科研通AI5应助沉静青旋采纳,获得10
11秒前
白问安完成签到,获得积分10
11秒前
皮蛋努力科研完成签到 ,获得积分10
12秒前
布吉岛呀发布了新的文献求助10
14秒前
崔领完成签到,获得积分20
15秒前
顾矜应助糊涂的丹南采纳,获得10
16秒前
周宇飞发布了新的文献求助30
16秒前
科研通AI5应助蛋糕了采纳,获得10
17秒前
17秒前
科研通AI5应助Darlene采纳,获得10
20秒前
lllll完成签到,获得积分10
20秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
20秒前
20秒前
十九集发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
离枝完成签到,获得积分10
23秒前
英姑应助我的文献互助采纳,获得10
24秒前
25秒前
尘扬发布了新的文献求助10
26秒前
离枝发布了新的文献求助10
26秒前
CipherSage应助十九集采纳,获得10
26秒前
27秒前
28秒前
28秒前
ding应助爱撒娇的冰安采纳,获得10
31秒前
32秒前
Orange应助小萝莉采纳,获得10
32秒前
沉静青旋发布了新的文献求助10
32秒前
Belinda发布了新的文献求助10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150