Dynamic Confidence-Aware Multi-Modal Emotion Recognition

计算机科学 稳健性(进化) 人工智能 情绪识别 情态动词 模式 机器学习 模式识别(心理学) 过程(计算) 模态(人机交互) 操作系统 社会科学 社会学 基因 化学 高分子化学 生物化学
作者
Qi Zhu,Chuhang Zheng,Zheng Zhang,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1358-1370 被引量:24
标识
DOI:10.1109/taffc.2023.3340924
摘要

Multi-modal emotion recognition has attracted increasing attention in human-computer interaction, as it extracts complementary information from physiological and behavioral features. Compared to single modal approaches, multi-modal fusion methods are more susceptible to uncertainty in emotion recognition, such as heterogeneity and inconsistent predictions across different modalities. Previous multi-modal approaches ignore systematic modeling of uncertainty in fusion and revelation of dynamic variations in emotion process. In this paper, we propose a dynamic confidence-aware fusion network for robust recognition of heterogeneous emotion features, including electroencephalogram (EEG) and facial expression. First, we develop a self-attention based multi-channel LSTM network to preliminarily align the heterogeneous emotion features. Second, we propose a confidence regression network to estimate true class probability (TCP) on each modality, which helps explore the uncertainty at modality level. Then, different modalities are weighted fused according to above two types of uncertainty. Finally, we adopt self-paced learning (SPL) mechanism to further improve the model robustness by alleviating negative effect from the hard learning samples. The experimental results on several multi-modal emotion datasets demonstrate the proposed method outperforms the state-of-the-art methods in emotion recognition performance and explicitly reveals the dynamic variation of emotion with uncertainty estimation. Our code is available at:
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuu完成签到,获得积分10
1秒前
1秒前
在水一方应助Yidie采纳,获得10
1秒前
英姑应助龙long采纳,获得10
1秒前
Rollei应助卡住叻采纳,获得10
1秒前
Astrolia发布了新的文献求助20
2秒前
3秒前
3秒前
情怀应助现代访梦采纳,获得30
4秒前
4秒前
xmyyy完成签到,获得积分10
4秒前
5秒前
Yuu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
乐乐应助兴尽晚回舟采纳,获得10
5秒前
Yyyang发布了新的文献求助10
6秒前
xmyyy发布了新的文献求助10
7秒前
7秒前
8秒前
10秒前
独特的夜阑完成签到 ,获得积分10
10秒前
Le完成签到,获得积分10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
蓝天应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721507
求助须知:如何正确求助?哪些是违规求助? 5266104
关于积分的说明 15294181
捐赠科研通 4870820
什么是DOI,文献DOI怎么找? 2615641
邀请新用户注册赠送积分活动 1565465
关于科研通互助平台的介绍 1522478