清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Model-level attention and batch-instance style normalization for federated learning on medical image segmentation

规范化(社会学) 计算机科学 分割 人工智能 箱子 领域(数学分析) 标记数据 原始数据 数据挖掘 深度学习 块(置换群论) 机器学习 模式识别(心理学) 算法 社会学 人类学 数学分析 几何学 数学 程序设计语言
作者
Fubao Zhu,Yanhui Tian,Chuang Han,Yanting Li,Jiaofen Nan,Yao Ni,Weihua Zhou
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102348-102348 被引量:4
标识
DOI:10.1016/j.inffus.2024.102348
摘要

Federated learning (FL) offers an effective privacy protection mechanism for cross-center medical collaboration and data sharing. In multi-site medical image segmentation, FL allows each medical site to act as a client, forming its own data domain. FL has the potential to enhance the performance of models on known domains. However, practical deployment faces the challenge of domain generalization (DG) due to the non-identical and non-independent (non-IID) nature of data from different domains. This results in decreased model performance in unseen domains. Current DG solutions are overly complex in addressing style differences and lack focus on inter-domain image features causing model differences. Furthermore, these solutions are not suitable for the FL paradigm that requires data storage separation. Hence, the lightweight model-level attention and batch-instance style normalization (MLA-BIN) is proposed to solve the DG of FL in this study. The MLA module represents the unseen domain as a linear combination of seen domain models. It does not require access to raw data but learns from the sufficient exploration of data features in known domains, thereby identifying differences in inter-domain data features and enabling the global model to generalize from seen to unseen domains. In the BIN block, batch normalization (BN) and instance normalization (IN) are combined to perform the shallow layers of the segmentation network for style normalization. By integrating the segmentation backbone network with the BIN block (BIN-Net), it ensures effective learning of intra-domain features and addresses the impact of inter-domain image style differences on domain generalization without accessing data from other centers. Extensive experimental results demonstrate that the proposed method achieved a Dice similarity coefficient of 88.27, 88.25 and 64.94 on the prostate, the optic disc and cup, and the COVID-19 lesion segmentation dataset, respectively, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
David发布了新的文献求助10
20秒前
火星上惜天完成签到 ,获得积分10
22秒前
24秒前
可夫司机完成签到 ,获得积分10
38秒前
科研通AI5应助001采纳,获得10
39秒前
艺霖大王完成签到 ,获得积分10
55秒前
song完成签到 ,获得积分10
56秒前
1分钟前
fqpang完成签到 ,获得积分10
1分钟前
1分钟前
001发布了新的文献求助10
1分钟前
小猴子完成签到 ,获得积分10
2分钟前
kmzzy完成签到,获得积分10
2分钟前
颜陌完成签到,获得积分10
3分钟前
3分钟前
3分钟前
lanxinge完成签到 ,获得积分20
3分钟前
完美世界应助jason采纳,获得10
4分钟前
4分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
含糊的茹妖完成签到 ,获得积分0
6分钟前
sysi完成签到 ,获得积分10
6分钟前
风里有声音完成签到 ,获得积分10
6分钟前
科研通AI2S应助一只羊采纳,获得10
7分钟前
xl完成签到 ,获得积分10
7分钟前
科研通AI2S应助yyy采纳,获得10
8分钟前
Barid完成签到,获得积分10
8分钟前
9分钟前
9分钟前
我啊发布了新的文献求助10
9分钟前
汉堡包应助我啊采纳,获得20
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
小小完成签到 ,获得积分10
10分钟前
科研通AI2S应助yyy采纳,获得10
10分钟前
poki完成签到 ,获得积分10
10分钟前
刘刘完成签到 ,获得积分10
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300905
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626