Predicting high-resolution air quality using machine learning: Integration of large eddy simulation and urban morphology data

空气质量指数 可解释性 卷积神经网络 计算机科学 环境科学 一致性(知识库) 人工智能 均方误差 人工神经网络 一般化 机器学习 气象学 统计 数学 地理 数学分析
作者
Shibao Wang,Jeremy McGibbon,Yanxu Zhang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:344: 123371-123371 被引量:13
标识
DOI:10.1016/j.envpol.2024.123371
摘要

Accurately predicting air pollutants, especially in urban areas with well-defined spatial structures, is crucial. Over the past decade, machine learning techniques have been widely used to forecast urban air quality. However, traditional machine learning approaches have limitations in accuracy and interpretability for predicting pollutants. In this study, we propose a convolutional neural network (CNN) model to predict the spatial distribution of CO concentration in Nanjing urban area at 10 m resolution. Our model incorporates various factors as input, such as building height, topography, emissions, and is trained against the outputs simulated by the parallelized large-eddy simulation model (PALM). The PALM model has 48 different scenarios that varied in emissions, wind speeds, and wind directions. The results display a strong consistency between the two models. Furthermore, we evaluate the performance of our model using a 10-fold cross-validation and out-of-sample cross-validation approach. This yields a robust correlation (with both R2 > 0.8) and a low RMSE between the CO predicted by the PALM and CNN models, which demonstrates the generalization capability of our CNN model. The CNN can extract crucial features from the resulted weight contribution map. This map indicates that the CO concentration at a location is more influenced by nearby buildings and emissions than distant ones. The interpretable patterns uncovered by our model are related to neighborhood effects, wind speeds, directions, and the impact of orientation on urban CO distribution. The model also shows high prediction accuracy (R > 0.8) when applied to another city. Overall, the integration of our CNN framework with the PALM model enhances the accuracy of air quality predictions, while enabling a fluid dynamic laws interpretation, providing effective tools for air quality management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coc完成签到 ,获得积分10
2秒前
song完成签到 ,获得积分10
3秒前
依人如梦完成签到 ,获得积分10
8秒前
庚子鼠完成签到,获得积分10
8秒前
MiManchi完成签到,获得积分10
8秒前
zhugao完成签到,获得积分10
11秒前
zz完成签到 ,获得积分10
14秒前
虚心的渊思完成签到 ,获得积分10
14秒前
qishi完成签到,获得积分10
18秒前
情怀应助黑球采纳,获得10
19秒前
务实完成签到 ,获得积分10
19秒前
溯风完成签到 ,获得积分10
20秒前
20秒前
双青豆完成签到 ,获得积分10
21秒前
喜悦的雁蓉完成签到,获得积分10
22秒前
小幸运R完成签到 ,获得积分10
24秒前
酷酷的王完成签到 ,获得积分10
24秒前
与一完成签到 ,获得积分10
25秒前
孟严青完成签到,获得积分10
25秒前
高不二发布了新的文献求助10
26秒前
Likz完成签到,获得积分10
26秒前
yueguang完成签到 ,获得积分10
29秒前
毛哥看文献完成签到 ,获得积分10
29秒前
30秒前
啾一口香菜完成签到 ,获得积分10
32秒前
黑球发布了新的文献求助10
34秒前
35秒前
小人物完成签到 ,获得积分10
35秒前
laoxie301发布了新的文献求助10
39秒前
水瓶鱼完成签到,获得积分0
39秒前
40秒前
WXR完成签到,获得积分10
45秒前
雨雨雨雨雨文完成签到 ,获得积分10
46秒前
梦若浮生完成签到 ,获得积分10
47秒前
豆腐青菜雨完成签到 ,获得积分10
50秒前
小鱼女侠完成签到 ,获得积分10
51秒前
小牛完成签到 ,获得积分10
51秒前
waayu完成签到 ,获得积分10
51秒前
juju1234完成签到 ,获得积分10
56秒前
苦咖啡行僧完成签到 ,获得积分10
56秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784858
求助须知:如何正确求助?哪些是违规求助? 3330123
关于积分的说明 10244413
捐赠科研通 3045505
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759557