Dual residual attention network for image denoising

计算机科学 降噪 人工智能 残余物 卷积神经网络 块(置换群论) 特征(语言学) 噪音(视频) 模式识别(心理学) 计算机视觉 图像(数学) 算法 数学 几何学 语言学 哲学
作者
Wencong Wu,Shijie Liu,Yuelong Xia,Yungang Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110291-110291 被引量:35
标识
DOI:10.1016/j.patcog.2024.110291
摘要

In image denoising, deep convolutional neural networks (CNNs) can obtain favorable performance on removing spatially invariant noise. However, many of these networks cannot perform well on removing the real noise (i.e. spatially variant noise) that is generated during image acquisition or transmission, which severely impedes their application in practical image denoising tasks. In this paper, we propose a novel Dual-branch Residual Attention Network (DRANet) for image denoising, which has both the merits of a wide model architecture and the attention-guided feature learning. The proposed DRANet includes two different parallel branches, which can capture complementary features to enhance the learning ability of the model. We designed a new residual attention block (RAB) and a novel hybrid dilated residual attention block (HDRAB) for the upper and lower branches, respectively. The RAB and HDRAB can capture rich local features through multiple skip connections between different convolutional layers, and the unimportant features can be dropped. Meanwhile, the long skip connections in each branch and the global feature fusion between the two parallel branches can effectively capture the global features as well. Extensive experiments demonstrate that compared with other state-of-the-art denoising methods, our DRANet can produce competitive denoising performance both on the synthetic and real-world noise removal. The code for DRANet is accessible at https://github.com/WenCongWu/DRANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得30
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
2秒前
悦耳冬萱完成签到 ,获得积分10
4秒前
香蕉子骞发布了新的文献求助10
5秒前
谢富杰发布了新的文献求助10
6秒前
小星完成签到 ,获得积分10
6秒前
姜小时完成签到,获得积分10
9秒前
祝笑柳发布了新的文献求助10
10秒前
10秒前
15秒前
致行完成签到,获得积分20
15秒前
无语发布了新的文献求助10
16秒前
上官若男应助KK采纳,获得10
17秒前
一只狗东西完成签到 ,获得积分10
18秒前
冰魂应助金木木采纳,获得20
21秒前
徐rl完成签到 ,获得积分10
21秒前
薛薛完成签到,获得积分10
25秒前
papa应助Rain采纳,获得30
25秒前
文武完成签到 ,获得积分0
25秒前
Z赵完成签到 ,获得积分10
29秒前
Zzzzccc完成签到,获得积分10
30秒前
zhy完成签到,获得积分10
32秒前
久旱逢甘霖完成签到 ,获得积分10
33秒前
34秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290