A Systematic Review on Intensifications of Artificial Intelligence Assisted Green Solvent Development

可解释性 计算机科学 生化工程 人工智能 数量结构-活动关系 过程(计算) 工艺工程 机器学习 工程类 操作系统
作者
Huaqiang Wen,Shihao Nan,Di Wu,Quanhu Sun,Tong Yu,Jun Zhang,Saimeng Jin,Weifeng Shen
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (48): 20473-20491 被引量:11
标识
DOI:10.1021/acs.iecr.3c02305
摘要

Solvents are indispensable components of chemical processes, and the application of ecofriendly, safe, and efficient solvents is vital for building green chemical processes. Nowadays, new techniques have been applied in discovering and exploring green solvents, among which artificial intelligence (AI) plays an increasingly important role in predicting their physical and chemical properties. Being able to explore the chemical space of green solvents, AI can also be utilized to screen out expected solvents and inversely design new solvents. This review introduces the application of AI assisted green solvent design, focusing on intensification techniques in the processes of green solvent design and property prediction. First, the various intensification techniques of quantitative structure–property relationships (QSPR) employed in the process of solvent property prediction are summarized, including the optimization and intensification of feature extraction, ensemble learning, uncertainty analysis, and interpretability modeling. After that, the basic principles and latest theoretical advances in the application of inverse molecular design for green solvents are reviewed, including high-throughput screening, computer-aided molecular design (CAMD), and deep generative models. Finally, new ideas are proposed for the improvement of each intensification technique in order to better match the high demands of the particular application in green solvent design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
埃勒娃应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
tjfwg发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
清脆雪糕发布了新的文献求助10
刚刚
刚刚
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
土豆酱发布了新的文献求助10
1秒前
早点毕业发布了新的文献求助10
3秒前
YanK发布了新的文献求助10
4秒前
NexusExplorer应助诗轩采纳,获得10
5秒前
共享精神应助斑ban采纳,获得10
6秒前
7秒前
7秒前
王霖应助underway采纳,获得50
7秒前
笃定完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
领导范儿应助土豆酱采纳,获得10
9秒前
现代书雪发布了新的文献求助10
9秒前
ygg完成签到,获得积分10
10秒前
落后的寻凝完成签到,获得积分10
11秒前
11秒前
11秒前
笃定发布了新的文献求助10
11秒前
12秒前
平行气流发布了新的文献求助10
12秒前
ZjieY完成签到,获得积分10
13秒前
13秒前
逝者如斯只是看着完成签到,获得积分10
14秒前
15秒前
就叫柠檬吧应助旷野采纳,获得10
15秒前
老头有低保完成签到,获得积分10
16秒前
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807380
求助须知:如何正确求助?哪些是违规求助? 3352160
关于积分的说明 10357573
捐赠科研通 3068183
什么是DOI,文献DOI怎么找? 1684884
邀请新用户注册赠送积分活动 809995
科研通“疑难数据库(出版商)”最低求助积分说明 765853