Improved YOLOv5 Network for Detection of Peach Blossom Quantity

最小边界框 计算机科学 背景(考古学) 人工智能 模式识别(心理学) 生物 图像(数学) 古生物学
作者
Sun Li,Jingfa Yao,Hao Cao,Haijiang Chen,Guifa Teng
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (1): 126-126 被引量:1
标识
DOI:10.3390/agriculture14010126
摘要

In agricultural production, rapid and accurate detection of peach blossom bloom plays a crucial role in yield prediction, and is the foundation for automatic thinning. The currently available manual operation-based detection and counting methods are extremely time-consuming and labor-intensive, and are prone to human error. In response to the above issues, this paper proposes a natural environment peach blossom detection model based on the YOLOv5 model. First, a cascaded network is used to add an output layer specifically for small target detection on the basis of the original three output layers. Second, a combined context extraction module (CAM) and feature refinement module (FSM) are added. Finally, the network clusters and statistically analyzes the range of multi-scale channel elements using the K-means++ algorithm, obtaining candidate box sizes that are suitable for the dataset. A novel bounding box regression loss function (SIoU) is used to fuse the directional information between the real box and the predicted box to improve detection accuracy. The experimental results show that, compared with the original YOLOv5s model, our model has correspondingly improved AP values for identifying three different peach blossom shapes, namely, bud, flower, and falling flower, by 7.8%, 10.1%, and 3.4%, respectively, while the final mAP value for peach blossom recognition increases by 7.1%. Good results are achieved in the detection of peach blossom flowering volume. The proposed model provides an effective method for obtaining more intuitive and accurate data sources during the process of peach yield prediction, and lays a theoretical foundation for the development of thinning robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
yyc发布了新的文献求助10
1秒前
pluto应助majf采纳,获得10
1秒前
2秒前
2秒前
情怀应助雪白的若翠采纳,获得30
3秒前
3秒前
隐形的baby完成签到,获得积分10
3秒前
Brian发布了新的文献求助10
4秒前
一一发布了新的文献求助10
5秒前
摸鱼的螺完成签到 ,获得积分10
5秒前
6秒前
我和狂三贴贴完成签到,获得积分10
6秒前
李健的小迷弟应助馒头采纳,获得10
7秒前
隐形的baby发布了新的文献求助10
7秒前
缓慢夜梦发布了新的文献求助10
7秒前
不懂白完成签到 ,获得积分10
8秒前
8秒前
半圆亻完成签到,获得积分10
8秒前
烟花应助李联洪采纳,获得10
9秒前
英俊的铭应助舒适的一曲采纳,获得10
10秒前
10秒前
10秒前
10秒前
大致若鱼发布了新的文献求助10
12秒前
赘婿应助晴天采纳,获得10
12秒前
浮游应助mniat采纳,获得10
13秒前
一啊呀发布了新的文献求助10
13秒前
14秒前
NexusExplorer应助jiajia采纳,获得10
14秒前
27完成签到 ,获得积分10
15秒前
TristanW完成签到,获得积分10
15秒前
Zurini发布了新的文献求助30
15秒前
黑山羊发布了新的文献求助10
17秒前
延胡索应助阿伦采纳,获得10
17秒前
雪白的若翠完成签到,获得积分10
18秒前
18秒前
充电宝应助小刘采纳,获得10
18秒前
18秒前
majf发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496407
求助须知:如何正确求助?哪些是违规求助? 4594086
关于积分的说明 14443515
捐赠科研通 4526702
什么是DOI,文献DOI怎么找? 2480341
邀请新用户注册赠送积分活动 1464913
关于科研通互助平台的介绍 1437702