Improved YOLOv5 Network for Detection of Peach Blossom Quantity

最小边界框 计算机科学 背景(考古学) 人工智能 模式识别(心理学) 古生物学 图像(数学) 生物
作者
Sun Li,Jingfa Yao,Hao Cao,Haijiang Chen,Guifa Teng
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (1): 126-126 被引量:1
标识
DOI:10.3390/agriculture14010126
摘要

In agricultural production, rapid and accurate detection of peach blossom bloom plays a crucial role in yield prediction, and is the foundation for automatic thinning. The currently available manual operation-based detection and counting methods are extremely time-consuming and labor-intensive, and are prone to human error. In response to the above issues, this paper proposes a natural environment peach blossom detection model based on the YOLOv5 model. First, a cascaded network is used to add an output layer specifically for small target detection on the basis of the original three output layers. Second, a combined context extraction module (CAM) and feature refinement module (FSM) are added. Finally, the network clusters and statistically analyzes the range of multi-scale channel elements using the K-means++ algorithm, obtaining candidate box sizes that are suitable for the dataset. A novel bounding box regression loss function (SIoU) is used to fuse the directional information between the real box and the predicted box to improve detection accuracy. The experimental results show that, compared with the original YOLOv5s model, our model has correspondingly improved AP values for identifying three different peach blossom shapes, namely, bud, flower, and falling flower, by 7.8%, 10.1%, and 3.4%, respectively, while the final mAP value for peach blossom recognition increases by 7.1%. Good results are achieved in the detection of peach blossom flowering volume. The proposed model provides an effective method for obtaining more intuitive and accurate data sources during the process of peach yield prediction, and lays a theoretical foundation for the development of thinning robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bakbak完成签到,获得积分10
刚刚
SciGPT应助hezaly采纳,获得10
1秒前
白白不读书完成签到 ,获得积分10
3秒前
4秒前
4秒前
wansida完成签到,获得积分10
4秒前
润润完成签到,获得积分10
4秒前
懦弱的祥完成签到 ,获得积分10
10秒前
12秒前
阿翼完成签到 ,获得积分10
12秒前
12秒前
Ruyii完成签到,获得积分10
14秒前
芒果柠檬发布了新的文献求助10
16秒前
18秒前
所所应助小平采纳,获得10
20秒前
22秒前
sssxr发布了新的文献求助10
23秒前
迪鸣完成签到,获得积分10
25秒前
FashionBoy应助Enuo采纳,获得10
26秒前
26秒前
豆子发布了新的文献求助10
27秒前
Millennial完成签到,获得积分10
27秒前
27秒前
Ava应助芒果柠檬采纳,获得10
31秒前
阿庭完成签到,获得积分20
33秒前
一口吸十只猫完成签到,获得积分10
34秒前
34秒前
Yuan完成签到,获得积分10
36秒前
37秒前
38秒前
Esfec发布了新的文献求助10
41秒前
Noora应助jimskylxk采纳,获得10
42秒前
重要忆秋完成签到,获得积分10
43秒前
嘻嘻嘻完成签到 ,获得积分10
43秒前
43秒前
南屋发布了新的文献求助10
43秒前
43秒前
45秒前
陈补天发布了新的文献求助10
47秒前
hezaly发布了新的文献求助10
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386113
关于积分的说明 10543746
捐赠科研通 3106834
什么是DOI,文献DOI怎么找? 1711181
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774390