A pepper RING‐finger E3 ligase, CaFIRF1, negatively regulates the high‐salt stress response by modulating the stability of CaFAF1

泛素连接酶 泛素 蛋白酶体 蛋白质降解 基因沉默 胡椒粉 细胞生物学 化学 生物 生物化学 基因 食品科学
作者
Yeongil Bae,Woonhee Baek,Chae Woo Lim,Sung Chul Lee
出处
期刊:Plant Cell and Environment [Wiley]
卷期号:47 (4): 1319-1333 被引量:2
标识
DOI:10.1111/pce.14818
摘要

Abstract Controlling protein stability or degradation via the ubiquitin‐26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR‐like gene, CaFAF1 , plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING‐type E3 ligase CaFIRF1 ( C apsicum a nnuum F AF1 I nteracting R ING F inger protein 1 ) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high‐salt treatments, CaFIRF1 ‐silenced pepper plants exhibited tolerant phenotypes. In contrast, co‐silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high‐salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell‐free degradation analysis showed that high‐salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1‐mediated ubiquitination of CaFAF1 proteins was reduced by high‐salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
时尚的靖完成签到 ,获得积分20
1秒前
赵mz关注了科研通微信公众号
1秒前
2秒前
2秒前
善学以致用应助淡墨采纳,获得10
4秒前
仨dsk完成签到,获得积分20
4秒前
博修发布了新的文献求助10
4秒前
打打应助直率铁身采纳,获得10
7秒前
坚定的剑通完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
不知道发布了新的文献求助10
8秒前
丹丹完成签到,获得积分10
9秒前
衣裳薄完成签到,获得积分10
9秒前
9秒前
haby完成签到,获得积分10
9秒前
9秒前
9秒前
钙钛矿柔性完成签到,获得积分10
10秒前
11秒前
拼搏的败完成签到 ,获得积分10
11秒前
科研通AI5应助123采纳,获得10
11秒前
11秒前
LMNg6n应助lumi采纳,获得30
11秒前
manan发布了新的文献求助10
11秒前
传奇3应助Melrose采纳,获得10
12秒前
yiling完成签到,获得积分20
13秒前
13秒前
爆米花应助zhangyu哥采纳,获得10
13秒前
小波完成签到 ,获得积分10
13秒前
明明发布了新的文献求助10
13秒前
眼睛大的怀曼完成签到,获得积分10
14秒前
HJS发布了新的文献求助10
15秒前
香蕉觅云应助11一采纳,获得10
15秒前
kk完成签到,获得积分10
15秒前
泡椒发布了新的文献求助10
15秒前
刘十一完成签到 ,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813009
求助须知:如何正确求助?哪些是违规求助? 3357442
关于积分的说明 10386778
捐赠科研通 3074631
什么是DOI,文献DOI怎么找? 1688970
邀请新用户注册赠送积分活动 812423
科研通“疑难数据库(出版商)”最低求助积分说明 767110