Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement

计算机科学 算法 适应性 局部最优 航程(航空) 元启发式 利用 数学优化 进化算法 人口 启发式 机器学习 人工智能 数学 工程类 社会学 航空航天工程 人口学 生物 计算机安全 生态学
作者
Heming Jia,Chenghao Lu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111402-111402 被引量:24
标识
DOI:10.1016/j.knosys.2024.111402
摘要

Meta-heuristic algorithms (MH) are naturally inspired global optimization algorithms. They are often relatively simple and can solve problems in a short period of time, with certain benefits. However, as the problem becomes more complex, the solution that the algorithm can obtain is often not the optimal solution to the problem, which limits its application scenarios. Therefore, improving the performance and solving accuracy of existing algorithms is crucial for expanding their application ability. In traditional optimization algorithms, there are often two concepts, namely exploration and exploitation. Exploration refers to a wide range of discrete search, used to avoid falling into local optima, and exploitation refers to a small range of focused exploration, used to improve algorithm accuracy. How to balance exploration and exploitation is the key to enhancing algorithm performance and problem adaptability. This paper proposes a brand new strategy named Guided Learning Strategy (GLS) to solve above problem. GLS obtains the dispersion degree of the population by calculating the standard deviation of the historical locations of individuals in recent generations, and infers what guidance the algorithm currently needs. When the algorithm is biased towards exploration, it will guide the algorithm to exploit. Otherwise, it will guide the algorithm to explore. It is precisely because this strategy can identify the current needs of the algorithm and provide assistance that it can improve the performance of most algorithms. This article improves three types of algorithms based on evolution (LSHADE_SPACMA), Stochastic Fractal Search (SFS), and Marine Predators Algorithm (MPA) with better performance, and tests their performance on 57 constrained engineering problems and CEC2020. The effectiveness of this strategy has been confirmed and proved for optimization problem. The source codes of the proposed GLS (GLS_MPA) can be accessed by https://github.com/luchenghao2022/Guided-Learning-Strategy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渣渣XM发布了新的文献求助10
刚刚
小学生发布了新的文献求助10
刚刚
1秒前
XXHH发布了新的文献求助10
1秒前
xuexuexixi123完成签到 ,获得积分10
1秒前
Jane完成签到,获得积分10
2秒前
文艺摩托完成签到,获得积分10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
懦弱的硬币完成签到,获得积分10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
Owen应助科研通管家采纳,获得10
3秒前
SumeiSophia发布了新的文献求助10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
万能图书馆应助活力盼晴采纳,获得10
7秒前
搜集达人应助Nature采纳,获得30
8秒前
林七七完成签到,获得积分10
8秒前
11秒前
11秒前
yyy完成签到,获得积分20
12秒前
14秒前
二七完成签到 ,获得积分10
14秒前
15秒前
zzz发布了新的文献求助10
15秒前
16秒前
tcx完成签到 ,获得积分10
16秒前
17秒前
fly发布了新的文献求助10
18秒前
18秒前
上上签完成签到,获得积分10
18秒前
19秒前
20秒前
斯文败类应助小马过河采纳,获得10
21秒前
21秒前
子车茗应助真实的火车采纳,获得20
21秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Magnum Contact Sheets 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897177
求助须知:如何正确求助?哪些是违规求助? 3441069
关于积分的说明 10819846
捐赠科研通 3166066
什么是DOI,文献DOI怎么找? 1749153
邀请新用户注册赠送积分活动 845149
科研通“疑难数据库(出版商)”最低求助积分说明 788437