A Spatiotemporal Deep Learning Framework for Scalp EEG-Based Automated Pain Assessment in Children

脑电图 头皮 计算机科学 疼痛评估 人工智能 模式识别(心理学) 机器学习 医学 物理疗法 心理学 神经科学 疼痛管理 解剖
作者
Zanhao Fu,Huaiyu Zhu,Yi Zhang,Ruohong Huan,Shuohui Chen,Yun Pan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 1889-1900 被引量:6
标识
DOI:10.1109/tbme.2024.3355215
摘要

Objective: Common pain assessment approaches such as self-evaluation and observation scales are inappropriate for children as they require patients to have reasonable communication ability. Subjective, inconsistent, and discontinuous pain assessment in children may reduce therapeutic effectiveness and thus affect their later life. Methods: To address the need for suitable assessment measures, this paper proposes a spatiotemporal deep learning framework for scalp electroencephalogram (EEG)-based automated pain assessment in children. The dataset comprises scalp EEG data recorded from 33 pediatric patients with an arterial puncture as a pain stimulus. Two electrode reduction plans in line with clinical findings are proposed. Combining three-dimensional hand-crafted features and preprocessed raw signals, the proposed transformer-based pain assessment network (STPA-Net) integrates both spatial and temporal information. Results: STPA-Net achieves superior performance with a subject-independent accuracy of 87.83% for pain recognition, and outperforms other state-of-the-art approaches. The effectiveness of electrode combinations is explored to analyze pain-related cortical activities and correspondingly reduce cost. The two proposed electrode reduction plans both demonstrate competitive pain assessment performance qualitatively and quantitatively. Conclusion and significance: This study is the first to develop a scalp EEG-based automated pain assessment for children adopting a method that is objective, standardized, and consistent. The findings provide a potential reference for future clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观无心应助风清扬采纳,获得30
1秒前
2秒前
pplynl完成签到,获得积分10
2秒前
风衣拖地完成签到 ,获得积分10
3秒前
Yoki完成签到,获得积分10
3秒前
konghusheng发布了新的文献求助10
4秒前
火星上的一斩完成签到 ,获得积分10
5秒前
Doctor.TANG完成签到 ,获得积分10
5秒前
6秒前
嘻嘻哈哈应助lilei采纳,获得10
6秒前
skywalker发布了新的文献求助10
7秒前
历史真相完成签到,获得积分10
8秒前
WKY完成签到,获得积分10
8秒前
ccc完成签到 ,获得积分10
8秒前
聪明萤完成签到 ,获得积分10
9秒前
南梦娇完成签到 ,获得积分10
9秒前
ivy完成签到,获得积分10
11秒前
居不易完成签到,获得积分10
12秒前
TianFuAI完成签到,获得积分10
13秒前
14秒前
14秒前
远航完成签到,获得积分10
16秒前
香蕉觅云应助思维隋采纳,获得10
16秒前
guo完成签到,获得积分10
16秒前
liujianxin发布了新的文献求助10
17秒前
hbj完成签到,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
RickyLiu应助科研通管家采纳,获得10
19秒前
aldehyde应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
20秒前
一只橙子完成签到,获得积分10
20秒前
22秒前
shift3310完成签到,获得积分10
22秒前
所所应助liuxch5采纳,获得10
23秒前
刘大倪完成签到,获得积分10
24秒前
呆萌井完成签到,获得积分10
25秒前
CNYDNZB完成签到 ,获得积分10
26秒前
时深完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256332
求助须知:如何正确求助?哪些是违规求助? 4418639
关于积分的说明 13752945
捐赠科研通 4291811
什么是DOI,文献DOI怎么找? 2355152
邀请新用户注册赠送积分活动 1351564
关于科研通互助平台的介绍 1312264