Clinical knowledge-guided deep reinforcement learning for sepsis antibiotic dosing recommendations

败血症 抗生素 重症监护医学 临床决策支持系统 医学 强化学习 计算机科学 构造(python库) 人工智能 决策支持系统 内科学 微生物学 生物 程序设计语言
作者
Yuan Wang,Anqi Liu,Jucheng Yang,Lin Wang,Ning Xiong,Yisong Cheng,Qin Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:150: 102811-102811 被引量:3
标识
DOI:10.1016/j.artmed.2024.102811
摘要

Sepsis is the third leading cause of death worldwide. Antibiotics are an important component in the treatment of sepsis. The use of antibiotics is currently facing the challenge of increasing antibiotic resistance (Evans et al., 2021). Sepsis medication prediction can be modeled as a Markov decision process, but existing methods fail to integrate with medical knowledge, making the decision process potentially deviate from medical common sense and leading to underperformance. (Wang et al., 2021). In this paper, we use Deep Q-Network (DQN) to construct a Sepsis Anti-infection DQN (SAI-DQN) model to address the challenge of determining the optimal combination and duration of antibiotics in sepsis treatment. By setting sepsis clinical knowledge as reward functions to guide DQN complying with medical guidelines, we formed personalized treatment recommendations for antibiotic combinations. The results showed that our model had a higher average value for decision-making than clinical decisions. For the test set of patients, our model predicts that 79.07% of patients will achieve a favorable prognosis with the recommended combination of antibiotics. By statistically analyzing decision trajectories and drug action selection, our model was able to provide reasonable medication recommendations that comply with clinical practices. Our model was able to improve patient outcomes by recommending appropriate antibiotic combinations in line with certain clinical knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧欧欧导完成签到,获得积分10
刚刚
1秒前
d_fishier完成签到 ,获得积分10
1秒前
顺利兰完成签到 ,获得积分10
1秒前
alan132完成签到,获得积分10
2秒前
clare完成签到 ,获得积分10
2秒前
三木完成签到 ,获得积分10
2秒前
和谐的映梦完成签到,获得积分10
3秒前
柠檬加冰完成签到,获得积分10
4秒前
zheng完成签到 ,获得积分10
4秒前
欢呼宛秋完成签到 ,获得积分10
5秒前
江哥完成签到,获得积分10
5秒前
荼蘼如雪发布了新的文献求助10
6秒前
稳重完成签到 ,获得积分10
7秒前
儒雅的千秋完成签到,获得积分10
7秒前
JamesPei应助liuniuniu采纳,获得10
8秒前
布知道完成签到 ,获得积分10
8秒前
刘一完成签到 ,获得积分10
9秒前
10秒前
Yep0672完成签到,获得积分10
10秒前
山山而川完成签到 ,获得积分10
10秒前
339564965完成签到,获得积分10
10秒前
12秒前
上官若男应助荼蘼如雪采纳,获得10
12秒前
建丰完成签到,获得积分10
13秒前
流沙无言完成签到 ,获得积分10
14秒前
ccc完成签到,获得积分10
14秒前
柠檬加冰发布了新的文献求助10
15秒前
liang19640908完成签到 ,获得积分10
15秒前
古藤完成签到 ,获得积分10
15秒前
松柏完成签到 ,获得积分10
17秒前
研友_ZA2B68完成签到,获得积分10
17秒前
只想顺利毕业的科研狗完成签到,获得积分10
17秒前
成就绮琴完成签到 ,获得积分10
18秒前
无脚鸟完成签到,获得积分10
18秒前
cc完成签到 ,获得积分10
19秒前
chenkj完成签到,获得积分10
19秒前
ikun完成签到,获得积分10
19秒前
EricSai完成签到,获得积分10
19秒前
123456完成签到 ,获得积分10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379721
关于积分的说明 10510198
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821413
科研通“疑难数据库(出版商)”最低求助积分说明 772615