已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying predictors of the tooth loss phenotype in a large periodontitis patient cohort using a machine learning approach

牙周炎 队列 表型 牙科 医学 队列研究 牙缺失 内科学 口腔健康 生物 遗传学 基因
作者
Chun‐Teh Lee,Kai Zhang,Wen Li,Kaichen Tang,Yaobin Ling,Muhammad F. Walji,Xiaoqian Jiang
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:144: 104921-104921 被引量:3
标识
DOI:10.1016/j.jdent.2024.104921
摘要

This study aimed to identify predictors associated with the tooth loss phenotype in a large periodontitis patient cohort in the university setting. Information on periodontitis patients and nineteen factors identified at the initial visit was extracted from electronic health records. The primary outcome is tooth loss phenotype (presence or absence of tooth loss). Prediction models were built on significant factors (single or combinatory) selected by the RuleFit algorithm, and these factors were further adopted by regression models. Model performance was evaluated by Area Under the Receiver Operating Characteristic Curve (AUROC) and Area Under the Precision-Recall Curve (AUPRC). Associations between predictors and the tooth loss phenotype were also evaluated by classical statistical approaches to validate the performance of machine learning models. In total, 7840 patients were included. The machine learning model predicting the tooth loss phenotype achieved AUROC of 0.71 and AUPRC of 0.66. Age, periodontal diagnosis, number of missing teeth at baseline, furcation involvement, and tooth mobility were associated with the tooth loss phenotype in both machine learning and classical statistical models. The rule-based machine learning approach improves model explainability compared to classical statistical methods. However, the model's generalizability needs to be further validated by external datasets. Predictors identified by the current machine learning approach using the RuleFit algorithm had clinically relevant thresholds in predicting the tooth loss phenotype in a large and diverse periodontitis patient cohort. The results of this study will assist clinicians in performing risk assessment for periodontitis at the initial visit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠茸完成签到 ,获得积分10
刚刚
vincen91完成签到,获得积分10
4秒前
Hello应助卡夫卡的熊采纳,获得10
4秒前
暴躁的元霜完成签到,获得积分20
11秒前
Orange应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
12秒前
LYL完成签到,获得积分10
13秒前
18秒前
踏实晓筠完成签到,获得积分10
19秒前
20秒前
淀粉肠完成签到 ,获得积分10
20秒前
23秒前
栋栋发布了新的文献求助30
25秒前
科研狂魔应助踏实晓筠采纳,获得10
26秒前
28秒前
biglixiang发布了新的文献求助10
29秒前
30秒前
Ammon发布了新的文献求助10
32秒前
Yi羿完成签到 ,获得积分10
34秒前
35秒前
Crisp完成签到,获得积分10
36秒前
冷静的小虾米完成签到 ,获得积分10
37秒前
37秒前
小二郎应助内向远侵采纳,获得10
39秒前
Ammon完成签到,获得积分10
40秒前
小陈666完成签到,获得积分10
40秒前
Banana完成签到,获得积分10
41秒前
曾培应助榨菜采纳,获得10
42秒前
元始天尊发布了新的文献求助10
42秒前
神勇的遥完成签到,获得积分10
43秒前
jagger完成签到,获得积分10
44秒前
任性的秋蝶完成签到,获得积分10
46秒前
酷波er应助元始天尊采纳,获得10
47秒前
小二郎应助瘦瘦慕凝采纳,获得10
48秒前
科目三应助yj采纳,获得10
48秒前
脑洞疼应助子虞采纳,获得10
51秒前
隐形曼青应助神勇的遥采纳,获得10
58秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Oxford Textbook of Endocrinology and Diabetes 3e 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827132
求助须知:如何正确求助?哪些是违规求助? 3369470
关于积分的说明 10456350
捐赠科研通 3089231
什么是DOI,文献DOI怎么找? 1699691
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251