Prevalence and Factors Associated with Sarcopenia Among Brazilian Older Adults: An Exploratory Network Analysis

肌萎缩 老年学 探索性分析 医学 人口学 心理学 物理医学与康复 内科学 计算机科学 社会学 数据科学
作者
Maura Fernandes Franco,Daniel Eduardo da Cunha Leme,Ibsen Bellini Coimbra,Arlete Maria Valente Coimbra
标识
DOI:10.2139/ssrn.4723986
摘要

Objectives: This study aimed to explore the prevalence of sarcopenia and its intricate associations with sociodemographic factors, anthropometric and body composition data, cognitive levels, and depressive symptoms in community-dwelling older adults.Study Design: A randomized cross-sectional study was extracted from a probabilistic cluster conducted on elderly individuals aged 65 years or older residing in the community.Methods: Sarcopenia was defined according to the criteria of the European Working Group on Sarcopenia in Older People (EWGSOP2). Body composition was assessed using dual-energy X-ray absorptiometry (DXA). The Geriatric Depression Scale (GDS-15) was employed to screen for depressive symptoms. Associations were analyzed using networks based on mixed graphical models. Predictability indices of the estimated networks were assessed using the "proportion of explained variance" (R2) for numerical variables and the "proportion of correct classification" (CC*) for categorical variables.Results: The study included 278 participants, with a majority being female (61%). Among those with sarcopenia, 67% were women and 33% were men. In the network model, sex, education, race, income, waist circumference, weight, bone mass, muscle mass values, and depressive symptoms were associated with sarcopenia. The covariates collectively demonstrated a high accuracy (67.6%) in predicting sarcopenia categories.Conclusion: Network analysis of sarcopenia proves to be a valuable tool, enabling the exploration of complex relationships between covariates and this outcome. Furthermore, the results underscore the significance of early screening for the treatment of sarcopenia in elderly individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu完成签到,获得积分10
1秒前
1秒前
华仔应助初见采纳,获得10
2秒前
2秒前
郭先生发布了新的文献求助10
2秒前
龙潭鑫发布了新的文献求助10
2秒前
李健应助桃子汽水采纳,获得10
3秒前
4秒前
Wait完成签到,获得积分10
4秒前
4秒前
Dd发布了新的文献求助10
5秒前
ChatGPT发布了新的文献求助10
5秒前
6秒前
香蕉觅云应助YWXO采纳,获得10
6秒前
7秒前
llllx完成签到,获得积分10
8秒前
郭先生完成签到,获得积分10
9秒前
hhhhh完成签到,获得积分10
9秒前
1tw发布了新的文献求助10
10秒前
蚂蚁完成签到,获得积分10
10秒前
边疆发布了新的文献求助10
10秒前
nn发布了新的文献求助10
10秒前
12秒前
12秒前
小二郎应助carat采纳,获得10
13秒前
13秒前
14秒前
jinhuanghuiyu完成签到,获得积分10
14秒前
qing发布了新的文献求助10
16秒前
elgar612发布了新的文献求助10
16秒前
科研通AI6应助聪明纸飞机采纳,获得10
17秒前
天天快乐应助Azed采纳,获得10
18秒前
打打应助芝士分子采纳,获得10
18秒前
鑫xin发布了新的文献求助10
19秒前
超文献发布了新的文献求助20
21秒前
明亮怀柔发布了新的文献求助20
22秒前
xzy998应助小铭采纳,获得20
23秒前
传奇3应助威武的天德采纳,获得10
23秒前
跳跃馒头应助fightingwu采纳,获得10
23秒前
嘻嘻哈哈应助fightingwu采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263186
求助须知:如何正确求助?哪些是违规求助? 4423851
关于积分的说明 13770951
捐赠科研通 4298749
什么是DOI,文献DOI怎么找? 2358664
邀请新用户注册赠送积分活动 1354904
关于科研通互助平台的介绍 1316172