Underwater Color Correction Network With Knowledge Transfer

计算机科学 水下 人工智能 地质学 海洋学
作者
Peng Lin,Yafei Wang,Yuanyuan Li,Zihao Fan,Xianping Fu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8088-8103 被引量:8
标识
DOI:10.1109/tmm.2024.3374598
摘要

Underwater images suffer from severe color distortion, due to the wavelength-dependent light attenuation and scattering. Various underwater image enhancement methods have been developed to improve the quality of degraded underwater images. However, contemporary approaches often overlook the impact of different scene colors on the overall process, potentially leading to undesired outcomes, such as enhanced images exhibiting excessive redness. In this paper, we observe that the color tones of degraded underwater images exhibit variability under the influence of different underwater targets and scenes. Each degraded color channel can be utilized to guide the color correction of other channels. Given this, a light-weight underwater color correction network, dubbed UCCNet, is presented to alleviate the issue of color corruption. In UCCNet, three parallel branches are designed to excavate the residual information within each color channel, subsequently leveraging these features to improve the quality of underwater images. Moreover, facing the challenge of effectively enhancing underwater images in diverse and complex scenes, the model UCCNet-KT is established based on UCCNet. In UCCNet-KT, the technology of knowledge transfer is designed to improve the generalization ability by enriching the dataset and constructing the loss function. Extensive experiments on various underwater datasets indicate the impressive performance of the UCCNet and UCCNet-KT qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烤鱼片完成签到 ,获得积分10
1秒前
东东完成签到,获得积分10
5秒前
阿达完成签到 ,获得积分10
5秒前
高大以南完成签到,获得积分10
5秒前
bnhh完成签到,获得积分10
6秒前
wanci应助林机一动采纳,获得10
6秒前
6秒前
含蓄听南完成签到 ,获得积分10
6秒前
7秒前
活泼蜡烛完成签到,获得积分10
8秒前
8秒前
lshao完成签到 ,获得积分10
11秒前
hhhhwl完成签到,获得积分10
11秒前
轻松叫兽完成签到,获得积分10
12秒前
alick完成签到,获得积分10
12秒前
lee完成签到 ,获得积分10
12秒前
小叶大王发布了新的文献求助10
13秒前
两颗西柚发布了新的文献求助10
13秒前
Catherine完成签到,获得积分20
15秒前
柯nb完成签到,获得积分10
15秒前
bubu发布了新的文献求助10
15秒前
打打应助科研通管家采纳,获得10
15秒前
ZOE应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
老阎应助科研通管家采纳,获得30
15秒前
科研通AI6应助科研通管家采纳,获得20
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
15秒前
Hello应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
小青椒应助科研通管家采纳,获得50
16秒前
161319141完成签到 ,获得积分10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
elitistwj完成签到,获得积分10
16秒前
16秒前
Tal完成签到,获得积分0
16秒前
龙眼完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128