声子
物理
非谐性
格子(音乐)
凝聚态物理
散射
热导率
晶体结构
结晶学
材料科学
化学
量子力学
声学
作者
Kewal Singh Rana,Debattam Sarkar,Nidhi Nidhi,Aditya Singh,Chandan Bera,Kanishka Biswas,Ajay Soni
出处
期刊:Physical review
[American Physical Society]
日期:2024-03-13
卷期号:109 (11)
被引量:4
标识
DOI:10.1103/physrevb.109.115202
摘要
Damping of phonon momentum suppresses the lattice thermal conductivity (${\ensuremath{\kappa}}_{\mathrm{l}}$) through low-energy acoustic-optical phonon interactions. We studied the thermal transport properties and underlying mechanism of phonon interactions in the large unit cell $\mathrm{C}{\mathrm{u}}_{26}{\mathrm{V}}_{2}\mathrm{S}{\mathrm{n}}_{6}\mathrm{S}{\mathrm{e}}_{32}$. The large number of atoms in the unit cell results in low acoustic phonon cutoff frequency, flat phonon branches, low-frequency Raman active modes, localized rattlerlike vibrations and strong crystalline anharmonicity. The crystal structure complexity disrupts the phonon propagation through weak bonded Cu atoms, bosonlike peak and poor phonon velocity. The sulfur at selenium sites ($\mathrm{C}{\mathrm{u}}_{26}{\mathrm{V}}_{2}\mathrm{S}{\mathrm{n}}_{6}\mathrm{S}{\mathrm{e}}_{30}{\mathrm{S}}_{2}$) distort the crystal lattice by offering additional scattering mechanism at the anionic sites, thereby increasing the power factor and decreasing the ${\ensuremath{\kappa}}_{\mathrm{l}}$. This strategic manipulation of phonon scattering towards ultralow ${\ensuremath{\kappa}}_{\mathrm{l}}$ not only results in improved thermoelectric performance but also offers insights into the fundamental understanding of heat transport in complex structured, large unit cell compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI