Many-objective coevolutionary learning algorithm with extreme learning machine auto-encoder for ensemble classifier of feedforward neural networks

计算机科学 过度拟合 人工智能 人工神经网络 机器学习 极限学习机 前馈神经网络 分类器(UML) 结构风险最小化 集成学习 算法
作者
Hong Li,Lixia Bai,Weifeng Gao,Jin Xie,Lingling Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:246: 123186-123186 被引量:6
标识
DOI:10.1016/j.eswa.2024.123186
摘要

In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity. Learning from data is often seen as a tradeoff between these two risks. Additionally, balancing training error and validation error can overcome the overfitting problem to some extent. It is known that the network performance is also related to regularization term. In order to consider four factors, i.e. training error, validation error, network complexity and regularization term simultaneously in the training process of a single-hidden layer feedforword neural network (SLFN), a many-objective coevolutionary learning algorithm (MOCELA) integrated with extreme learning machine auto-encoder (ELMAE), called MOCELA-ELMAE is presented. In MOCELA, the non-dominated sorting genetic algorithm III (NSGA-III) is improved for handling the many-objective model with hybrid variables, where binary coding is used for structure learning and real coding is utilized for representing input parameters, referring to all input weights and hidden biases of the AE network. Output parameters of AE, i.e. output weights are analytically calculated by the non-iterative learning rule. The network structure and connection parameters of SLFN are determined based on those of AE. A set of Pareto optimal solutions are eventually collected by the MOCELA-ELMAE, which represents multiple optimal SLFNs. To make the final decision, three best SLFNs with minimum validation errors are selected as the base classifiers for selective ensemble learning. Extensive experiments are implemented on the benchmark classification data sets of UCI machine learning repository, and obvious improvements have been observed when the proposed MOCELA-ELMAE is compared with the NSGA-III based on hybrid coding and completely non-iterative learning of SLFN respectively. The experimental results also illustrate that the MOCELA-ELMAE performs much better than other state-of-the-art learning algorithms on many data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伤脑筋完成签到,获得积分10
4秒前
Libgenxxxx完成签到,获得积分10
5秒前
超锅完成签到,获得积分20
5秒前
6秒前
6秒前
我是老大应助油麦采纳,获得10
7秒前
8秒前
Eraser完成签到,获得积分10
8秒前
8秒前
小马甲应助Camellia采纳,获得10
8秒前
罗小黑完成签到,获得积分10
9秒前
10秒前
隐形的若之完成签到,获得积分10
10秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
桐桐应助天真的半莲采纳,获得30
13秒前
冷静丸子完成签到 ,获得积分10
13秒前
15秒前
15秒前
16秒前
16秒前
蒋丞完成签到,获得积分10
17秒前
17秒前
学医的小欣完成签到,获得积分10
18秒前
SJW--666发布了新的文献求助10
19秒前
LWL发布了新的文献求助10
19秒前
浮游应助谦让白玉采纳,获得10
19秒前
赘婿应助henry采纳,获得10
20秒前
Lucas应助哭泣毛巾采纳,获得10
21秒前
村上种树完成签到,获得积分10
22秒前
22秒前
张婷婷完成签到 ,获得积分10
22秒前
李昕123发布了新的文献求助10
22秒前
科研通AI6应助楚慈楚采纳,获得10
23秒前
书记发布了新的文献求助10
23秒前
25秒前
西风漂流应助小静采纳,获得10
25秒前
咕饼完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462431
求助须知:如何正确求助?哪些是违规求助? 4567153
关于积分的说明 14309091
捐赠科研通 4493001
什么是DOI,文献DOI怎么找? 2461381
邀请新用户注册赠送积分活动 1450469
关于科研通互助平台的介绍 1425794