Oxygen generating biomaterials at the forefront of regenerative medicine: advances in bone regeneration

再生(生物学) 再生医学 氧气张力 缺氧(环境) 组织工程 氧气 生物医学工程 干细胞 细胞生物学 化学 医学 生物 有机化学
作者
Jiayi Zhao,Chao Zhou,Xiao Yang,Kunyan Zhang,Qiang Zhang,Linying Xia,Bo Jiang,Chanyi Jiang,Wenyi Ming,Hengjian Zhang,Hengguo Long,Wenqing Liang
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:12 被引量:9
标识
DOI:10.3389/fbioe.2024.1292171
摘要

Globally, an annual count of more than two million bone transplants is conducted, with conventional treatments, including metallic implants and bone grafts, exhibiting certain limitations. In recent years, there have been significant advancements in the field of bone regeneration. Oxygen tension regulates cellular behavior, which in turn affects tissue regeneration through metabolic programming. Biomaterials with oxygen release capabilities enhance therapeutic effectiveness and reduce tissue damage from hypoxia. However, precise control over oxygen release is a significant technical challenge, despite its potential to support cellular viability and differentiation. The matrices often used to repair large-size bone defects do not supply enough oxygen to the stem cells being used in the regeneration process. Hypoxia-induced necrosis primarily occurs in the central regions of large matrices due to inadequate provision of oxygen and nutrients by the surrounding vasculature of the host tissues. Oxygen generating biomaterials (OGBs) are becoming increasingly significant in enhancing our capacity to facilitate the bone regeneration, thereby addressing the challenges posed by hypoxia or inadequate vascularization. Herein, we discussed the key role of oxygen in bone regeneration, various oxygen source materials and their mechanism of oxygen release, the fabrication techniques employed for oxygen-releasing matrices, and novel emerging approaches for oxygen delivery that hold promise for their potential application in the field of bone regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薯愿发布了新的文献求助10
刚刚
学术底层发布了新的文献求助10
1秒前
1秒前
曾阿牛发布了新的文献求助10
6秒前
整齐芷文完成签到,获得积分10
7秒前
赘婿应助露亮采纳,获得10
7秒前
7秒前
MoNesy发布了新的文献求助150
7秒前
学术底层完成签到,获得积分10
8秒前
ruyunlong发布了新的文献求助10
9秒前
天真怜晴完成签到,获得积分10
11秒前
腼腆的高丽完成签到,获得积分10
20秒前
酷波er应助quzhenzxxx采纳,获得10
20秒前
小丁同学应助聆(*^_^*)采纳,获得10
22秒前
鸣笛应助疯狂的翅膀采纳,获得10
22秒前
knn完成签到 ,获得积分10
25秒前
MeSs完成签到 ,获得积分10
28秒前
kei完成签到,获得积分10
29秒前
如意2023完成签到 ,获得积分10
30秒前
柯一一应助能干的豆仔采纳,获得10
30秒前
为什么不学习完成签到,获得积分10
30秒前
嘛呱完成签到,获得积分10
31秒前
无花果应助科研通管家采纳,获得10
31秒前
31秒前
shinysparrow应助科研通管家采纳,获得200
31秒前
大个应助科研通管家采纳,获得10
31秒前
yar应助科研通管家采纳,获得10
31秒前
852应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得30
31秒前
英姑应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
32秒前
SciGPT应助科研通管家采纳,获得10
32秒前
32秒前
你们才来发布了新的文献求助150
32秒前
斯文败类应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
打打应助科研通管家采纳,获得50
32秒前
善学以致用应助lucky采纳,获得10
32秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899758
求助须知:如何正确求助?哪些是违规求助? 3444367
关于积分的说明 10834793
捐赠科研通 3169337
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789206