A functional identification platform reveals frequent, spontaneous neoantigen-specific T cell responses in patients with cancer

生物信息学 外周血单个核细胞 CD8型 癌症 医学 抗原 人类白细胞抗原 T细胞 计算生物学 免疫学 免疫系统 生物 基因 体外 遗传学
作者
Aaron M. Miller,Zeynep Koşaloğlu,Luise Westernberg,Leslie Montero,Milad Bahmanof,Angela Frentzen,Manasa Lanka,Ashmitaa Logandha Ramamoorthy Premlal,Grégory Seumois,Jason Greenbaum,Spencer E. Brightman,Karla Soria Zavala,Rukman R. Thota,Martin S. Naradikian,Samir Makani,Scott M. Lippman,Alessandro Sette,Ezra E.W. Cohen,Bjoern Peters,Stephen P. Schoenberger
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:16 (736) 被引量:2
标识
DOI:10.1126/scitranslmed.abj9905
摘要

The clinical impact of tumor-specific neoantigens as both immunotherapeutic targets and biomarkers has been impeded by the lack of efficient methods for their identification and validation from routine samples. We have developed a platform that combines bioinformatic analysis of tumor exomes and transcriptional data with functional testing of autologous peripheral blood mononuclear cells (PBMCs) to simultaneously identify and validate neoantigens recognized by naturally primed CD4 + and CD8 + T cell responses across a range of tumor types and mutational burdens. The method features a human leukocyte antigen (HLA)–agnostic bioinformatic algorithm that prioritizes mutations recognized by patient PBMCs at a greater than 40% positive predictive value followed by a short-term in vitro functional assay, which allows interrogation of 50 to 75 expressed mutations from a single 50-ml blood sample. Neoantigens validated by this method include both driver and passenger mutations, and this method identified neoantigens that would not have been otherwise detected using an in silico prediction approach. These findings reveal an efficient approach to systematically validate clinically actionable neoantigens and the T cell receptors that recognize them and demonstrate that patients across a variety of human cancers have a diverse repertoire of neoantigen-specific T cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Du_u20230228发布了新的文献求助30
刚刚
fei发布了新的文献求助10
刚刚
刚刚
彤彤完成签到,获得积分20
1秒前
chris chen完成签到,获得积分10
1秒前
1秒前
523驳回了汉堡包应助
1秒前
小黑是个甜仔完成签到,获得积分10
1秒前
万能图书馆应助左丘绝山采纳,获得10
2秒前
2秒前
2秒前
3秒前
小巧皮卡丘完成签到,获得积分10
3秒前
lijunying完成签到,获得积分10
3秒前
SCIer发布了新的文献求助10
3秒前
无辜澜发布了新的文献求助10
4秒前
NexusExplorer应助小石头采纳,获得10
4秒前
Lou完成签到,获得积分10
4秒前
Aaaa发布了新的文献求助20
4秒前
符驳完成签到,获得积分10
5秒前
我是老大应助笨笨采纳,获得10
5秒前
我爱妹妹发布了新的文献求助10
5秒前
唯为应助星辰采纳,获得10
5秒前
6秒前
自然白安发布了新的文献求助10
6秒前
6秒前
大个应助lezongyang采纳,获得10
6秒前
科研通AI5应助jason70采纳,获得10
6秒前
7秒前
光亮藏鸟完成签到,获得积分10
7秒前
晴空万里完成签到 ,获得积分10
7秒前
科研通AI5应助ssx采纳,获得10
8秒前
h1352216完成签到,获得积分10
8秒前
Yohann完成签到 ,获得积分10
9秒前
啦啦啦啦发布了新的文献求助30
9秒前
lijunying发布了新的文献求助10
9秒前
10秒前
10秒前
安静的卿发布了新的文献求助10
11秒前
葛擎苍完成签到,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809611
求助须知:如何正确求助?哪些是违规求助? 3354164
关于积分的说明 10368918
捐赠科研通 3070418
什么是DOI,文献DOI怎么找? 1686244
邀请新用户注册赠送积分活动 810863
科研通“疑难数据库(出版商)”最低求助积分说明 766396