Channel modeling for satellite-to-underwater laser communication (StULC) links remains challenging due to long distances and the diversity of the channel constituents. The StULC channel is typically segmented into three isolated channels: the atmospheric channel, the air-water interface channel, and the underwater channel. Previous studies involving StULC channel modeling either focused on separated channels or neglected the combined effects of particles and turbulence on laser propagation. In this paper, we established a comprehensive StULC channel model by an analytical-Monte Carlo hybrid approach, taking into account the effects of both particles and turbulence. We first obtained the intensity distribution of the transmitted laser beam after passing through the turbulent atmosphere based on the extended Huygens-Fresnel principle. Then we derived a closed-form probability density function of the photon propagating direction after passing through the air-water interface, which greatly simplified the modeling of StULC links. At last, we employed a Monte Carlo method to model the underwater links and obtained the power distribution at the receiving plane. Based on the proposed StULC channel model, we analyzed the bit error rate and the outage probability under different environmental conditions. Numerical results demonstrated that, the influence of underwater particle concentration on the communication performance is much pronounced than those of both the atmospheric turbulence and the underwater turbulence. Notably, increasing the wind speed at the air-water interface does not significantly worsen the communication performance of the StULC links.