Development and Validation of a Web-Based Machine Learning Model for Predicting Early Neurological Deterioration Following Stroke Thrombolysis: Multicenter Study

作者
Juan Li,Huanxian Chang,Shouyun Du,Chunyang Zhang,Han Zhang,Lu-Ming Li,Lingsheng Kong,Guodong Li,Tingting Liang,Ronghong Yang,Bingchao Xu,Xinyu Zhou,Guanghui Zhang,Yongan Sun,Xiaobing He,Bei Xu,Zaipo Li,Yanan He,Mingli He
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e77858-e77858
标识
DOI:10.2196/77858
摘要

Abstract Background Early neurological deterioration (END) significantly worsens outcomes in patients with acute ischemic stroke (AIS) receiving intravenous thrombolysis, yet clinicians lack reliable tools to identify high-risk patients who need intensified monitoring and preemptive interventions. Objective This study aimed to develop and validate a high-performance machine learning model for END prediction that enables personalized risk-stratified management of patients with AIS after thrombolysis. Methods This multicenter study analyzed 1927 patients with AIS who were treated with intravenous thrombolysis in 3 hospitals, comprising a development cohort (n=1361) from Lianyungang Clinical Medical College and an external validation cohort (n=566) from 2 independent hospitals. We systematically evaluated 27 clinical parameters using multiple machine learning algorithms to develop ENDRAS (Early Neurological Deterioration Risk Assessment Score), a prediction model based on 6 readily available clinical variables. Model performance was assessed through comprehensive metrics (area under the receiver operating characteristic curve, accuracy, precision, recall, F 1 -score) in both internal and external validation cohorts. Results The XGBoost-based ENDRAS showed promising predictive performance (area under the receiver operating characteristic curve=0.988, 95% CI 0.983‐0.993) using 6 readily available parameters: Trial of ORG 10172 in Acute Stroke Treatment classification, intracranial artery stenosis severity, National Institutes of Health Stroke Scale score, systolic blood pressure, neutrophil count, and red blood cell distribution width. We established a dual-pathway management protocol for stratifying patients into low-risk (<29%) and high-risk (≥29%) groups, where high-risk patients receive intensive monitoring with hourly assessments and expedited imaging, while low-risk patients follow a resource-optimized protocol without compromising safety. Implemented as a web-based calculator with a <0.02-second computation time, ENDRAS enables real-time clinical decision support at the point of care. Conclusions ENDRAS integrates END prediction into actionable clinical pathways, potentially improving postthrombolysis care through personalized monitoring strategies and targeted interventions. Its robust performance in merged cohorts, efficient computation time, and structured management framework address key challenges in stroke care while enhancing resource utilization. Further prospective validation across diverse populations is needed to fully establish ENDRAS as a standard clinical decision-support system, but its ability to identify high-risk patients early may significantly improve outcomes in AIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的绿蝶完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
十五完成签到,获得积分10
6秒前
cata完成签到,获得积分10
6秒前
龙2024完成签到,获得积分10
6秒前
苏以禾完成签到 ,获得积分10
7秒前
八九完成签到 ,获得积分10
7秒前
开心发布了新的文献求助10
10秒前
11秒前
pan发布了新的文献求助10
12秒前
研友_ZA2B68完成签到,获得积分0
13秒前
HH发布了新的文献求助20
13秒前
许大脚完成签到 ,获得积分10
14秒前
可爱的函函应助xdc采纳,获得10
16秒前
每天都很忙完成签到 ,获得积分10
18秒前
const完成签到,获得积分10
19秒前
酪酪Alona完成签到,获得积分10
19秒前
七小七完成签到 ,获得积分10
20秒前
吴乐盈完成签到,获得积分10
20秒前
Lqian_Yu完成签到 ,获得积分10
21秒前
鲁万仇完成签到,获得积分10
21秒前
18318933768完成签到,获得积分10
22秒前
李李李完成签到,获得积分10
23秒前
mike2012完成签到 ,获得积分10
23秒前
23秒前
黑猫老师完成签到,获得积分10
25秒前
在水一方应助cata采纳,获得10
27秒前
zzz小秦完成签到 ,获得积分10
27秒前
111完成签到,获得积分10
27秒前
研友_nvebxL完成签到,获得积分10
28秒前
339564965完成签到,获得积分10
28秒前
东山发布了新的文献求助10
28秒前
赵怼怼完成签到,获得积分10
29秒前
小奕完成签到,获得积分10
29秒前
zongzi12138完成签到,获得积分0
29秒前
ZHQ完成签到,获得积分10
29秒前
ccc完成签到,获得积分0
29秒前
量子星尘发布了新的文献求助10
29秒前
BK_201完成签到,获得积分10
30秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880