Probability Map-Guided Network for 3D Volumetric Medical Image Segmentation

作者
Zhiqin Zhu,Zimeng Zhang,Guanqiu Qi,Yuanyuan Li,Pan Yang,Yu Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 7222-7234
标识
DOI:10.1109/tip.2025.3623259
摘要

3D medical images are volumetric data that provide spatial continuity and multi-dimensional information. These features provide rich anatomical context. However, their anisotropy may result in reduced image detail along certain directions. This can cause blurring or distortion between slices. In addition, global or local intensity inhomogeneities are often observed. This may be due to limitations of the imaging equipment, inappropriate scanning parameters, or variations in the patient's anatomy. This inhomogeneity may blur lesion boundaries and may also mask true features, causing the model to focus on irrelevant regions. Therefore, a probability map-guided network for 3D volumetric medical image segmentation (3D-PMGNet) is proposed. The probability maps generated from the intermediate features are used as supervisory signals to guide the segmentation process. A new probability map reconstruction method is designed, combining dynamic thresholding with local adaptive smoothing. This enhances the reliability of high-response regions while suppressing low-response noise. A learnable channel-wise temperature coefficient is introduced to adjust the probability distribution to make it closer to the true distribution; in addition, a feature fusion method based on dynamic prompt encoding is developed. The response strength of the main feature maps is dynamically adjusted, and this adjustment is achieved through the spatial position encoding derived from the probability maps. The proposed method has been evaluated on four datasets. Experimental results show that the proposed method outperforms state-of-the-art 3D medical image segmentation methods. The source codes have been publicly released at https://github.com/ZHANGZIMENG01/3D-PMGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助哈哈哈哈采纳,获得10
2秒前
AMAME12完成签到,获得积分10
2秒前
3秒前
zz完成签到,获得积分20
3秒前
阳和启蛰发布了新的文献求助10
3秒前
大智若愚啊完成签到,获得积分20
3秒前
小邸发布了新的文献求助10
3秒前
drwzm完成签到 ,获得积分10
4秒前
Yeyuntian发布了新的文献求助10
4秒前
5秒前
AMAME12发布了新的文献求助10
5秒前
汤姆凯特完成签到,获得积分10
5秒前
6秒前
科研通AI6应助123采纳,获得20
7秒前
英俊的铭应助李金玉采纳,获得10
7秒前
7秒前
hzh发布了新的文献求助10
9秒前
李爱国应助Giannis采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
阳和启蛰完成签到,获得积分10
11秒前
哈基米德应助汤姆凯特采纳,获得20
11秒前
11秒前
朗月清秋Y发布了新的文献求助10
12秒前
14秒前
Titter发布了新的文献求助10
15秒前
Mint完成签到,获得积分10
15秒前
王涛发布了新的文献求助10
16秒前
zzx发布了新的文献求助30
16秒前
hzh完成签到,获得积分10
16秒前
17秒前
小黑子发布了新的文献求助10
17秒前
17秒前
xxx完成签到,获得积分10
19秒前
青萍子林完成签到,获得积分10
19秒前
望TIAN完成签到,获得积分10
19秒前
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342994
求助须知:如何正确求助?哪些是违规求助? 4478635
关于积分的说明 13940380
捐赠科研通 4375604
什么是DOI,文献DOI怎么找? 2404155
邀请新用户注册赠送积分活动 1396661
关于科研通互助平台的介绍 1369026