Deep learning predicts HER2 status in invasive breast cancer from multimodal ultrasound and MRI

医学 超声波 乳腺癌 放射科 肿瘤科 癌症 医学物理学 内科学
作者
Yuhong Fan,Kaixiang Sun,Yao Xiao,Peng Zhong,Meng Yun,Yang Yang,Zhenning Du,Jingqin Fang
标识
DOI:10.17305/bb.2025.12475
摘要

The preoperative human epidermal growth factor receptor type 2 (HER2) status of breast cancer is typically determined by pathological examination of a core needle biopsy, which influences the efficacy of neoadjuvant chemotherapy (NAC). However, the highly heterogeneous nature of breast cancer and the limitations of needle aspiration biopsy increase the instability of pathological evaluation. The aim of this study was to predict HER2 status in preoperative breast cancer using deep learning (DL) models based on ultrasound (US) and magnetic resonance imaging (MRI). The study included women with invasive breast cancer who underwent US and MRI at our institution between January 2021 and July 2024. US images and dynamic contrast-enhanced T1-weighted MRI images were used to construct DL models (DL-US: the DL model based on US; DL-MRI: the model based on MRI; and DL-MRI&US: the combined model based on both MRI and US). All classifications were based on postoperative pathological evaluation. Receiver operating characteristic analysis and the DeLong test were used to compare the diagnostic performance of the DL models. In the test cohort, DL-US differentiated the HER2 status of breast cancer with an AUC of 0.842 (95% CI: 0.708–0.931), and sensitivity and specificity of 89.5% and 79.3%, respectively. DL-MRI achieved an AUC of 0.800 (95% CI: 0.660–0.902), with sensitivity and specificity of 78.9% and 79.3%, respectively. DL-MRI&US yielded an AUC of 0.898 (95% CI: 0.777–0.967), with sensitivity and specificity of 63.2% and 100.0%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzyyyuuu完成签到 ,获得积分10
刚刚
wangang发布了新的文献求助10
刚刚
大模型应助王瑞采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
2秒前
zhou发布了新的文献求助10
3秒前
斯文败类应助标点符号采纳,获得10
3秒前
4秒前
魔法签证1993完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
dongdadada完成签到,获得积分10
5秒前
qyz完成签到,获得积分10
5秒前
5秒前
嘻嘻发布了新的文献求助10
5秒前
su123发布了新的文献求助10
5秒前
CipherSage应助zaphkiel采纳,获得10
6秒前
6秒前
AbMole_小智发布了新的文献求助10
6秒前
6秒前
7秒前
qianshu完成签到,获得积分10
7秒前
聪明牛排发布了新的文献求助10
8秒前
Lemonade发布了新的文献求助20
8秒前
支山柳发布了新的文献求助10
8秒前
乐乐应助haoyooo采纳,获得10
8秒前
wanci应助hfnnn采纳,获得10
9秒前
10秒前
lili完成签到 ,获得积分10
10秒前
英俊的铭应助砚台采纳,获得10
10秒前
ding应助苒苒采纳,获得10
10秒前
Bamboo发布了新的文献求助30
10秒前
10秒前
朱先生完成签到 ,获得积分10
10秒前
五个跳舞的人完成签到,获得积分10
13秒前
YIBO发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
Understanding Jurisprudence: An Introduction to Legal Theory (6th edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4272902
求助须知:如何正确求助?哪些是违规求助? 3802592
关于积分的说明 11916229
捐赠科研通 3449317
什么是DOI,文献DOI怎么找? 1891697
邀请新用户注册赠送积分活动 942394
科研通“疑难数据库(出版商)”最低求助积分说明 846301