DreamAlign: Dynamic Text-to-3D Optimization with Human Preference Alignment

偏爱 计算机科学 人工智能 数学 统计
作者
Gaofeng Liu,Zhiyuan Ma,Tao Fang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (5): 5424-5432
标识
DOI:10.1609/aaai.v39i5.32577
摘要

Recent years have witnessed the remarkable success of Text-to-3D generation, particularly with the rise of mainstream conditional diffusion models (DMs). Though achieving substantial progress, existing methods still face a knotty "human preference" dilemma, that is the 3D contents generated by the models often deviate greatly from the desired effects (e.g., perspective, aesthetics, shading, appearance, etc.) due to the lack of attention to human preferences. To mitigate the limitation of data deficiency and enable human preference learning, we first elaborately curate the HP3D, a text-to-3D dataset with expert preference annotations which is initally captioned by the multimodal large model LLava and then refined by human expert. Based on such a brand-new HP3D, we further propose DreamAlign, a reward-free method that does not require designing any complex reward models whereas only by introducing a light-weight lora adapter and then designing a novel direct 3D preference optimization (D-3DPO) algorithm for training. Moreover, in the stage of text-to-3D we design an additional Preference Contrastive Feedback training for score distillation sampling, which enables the generated 3D objects to align the human preferences (e.g., aesthetics, material, etc.). Extensive experiments demonstrate that DreamAlign consistently achieves state-of-the-art performance on generative effects and human preference alignment across various benchmark evaluations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的如霜关注了科研通微信公众号
1秒前
科研通AI6应助Hannya采纳,获得10
1秒前
1秒前
Lucas应助圈圈采纳,获得10
1秒前
2秒前
yanying_shc发布了新的文献求助10
2秒前
皮不可发布了新的文献求助10
2秒前
鸡腿子完成签到,获得积分10
3秒前
小九给小九的求助进行了留言
3秒前
3秒前
3秒前
orixero应助小熊采纳,获得10
3秒前
3秒前
视野胤发布了新的文献求助10
4秒前
假面骑士完成签到,获得积分10
4秒前
achilles发布了新的文献求助10
4秒前
lasalu应助丰富曼青采纳,获得10
5秒前
Orange应助不想开学吧采纳,获得10
5秒前
852应助actor2006采纳,获得100
5秒前
melo发布了新的文献求助10
5秒前
英俊的铭应助快乐的风采纳,获得20
5秒前
完美世界应助威武的绿草采纳,获得10
6秒前
为不争完成签到,获得积分10
8秒前
桃花不换酒完成签到,获得积分10
8秒前
8秒前
8秒前
谢小盟发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
小杭76应助www采纳,获得10
10秒前
浮游应助自由大叔采纳,获得10
10秒前
夜夜完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
自然的衫完成签到 ,获得积分10
12秒前
iq_lv完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261224
求助须知:如何正确求助?哪些是违规求助? 4422343
关于积分的说明 13765975
捐赠科研通 4296787
什么是DOI,文献DOI怎么找? 2357517
邀请新用户注册赠送积分活动 1353903
关于科研通互助平台的介绍 1315103