A radiomics nomogram based on MRI for differentiating vertebral osteomyelitis from vertebral compression fractures

医学 脊椎骨髓炎 列线图 无线电技术 放射科 压缩(物理) 椎体压缩性骨折 骨髓炎 椎骨 核医学 外科 经皮 材料科学 内科学 复合材料
作者
Hao Xing,Zhe Liu,Zheng Li,Huan Liu,Yanan Wang,Zhengqi Chang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:: 112106-112106
标识
DOI:10.1016/j.ejrad.2025.112106
摘要

This study aims to investigate the value of a radiomics nomogram based on magnetic resonance imaging (MRI) in distinguishing vertebral compression fractures (VCFs) from vertebral osteomyelitis (VOs). We conducted a retrospective analysis of the clinical data from 100 patients with VCFs and VOs, respectively at our hospital. The cases were randomly divided into training (n = 140) and testing sets (n = 60) in a 7:3 ratio. Two experienced radiologists outlined the regions of interest (ROI) on the MRI images using T2-weighted fat suppression (T2WI-FS) images and extracted the radiomic features. The Least Absolute Shrinkage and Selection Operator (Lasso) algorithm was used to select and reduce radiomic features to establish a radiomics model (Model 1), and a Logistic Regression algorithm was used to construct a radiomics score. A multivariable logistic regression analysis was conducted to establish a clinical model (Model 2). A combined model (radiomics nomogram, Model 3) was built based on the radiomics score and independent clinical factors. The diagnostic performance of Models 1, 2, and 3 was validated using the Area Under the Curve (AUC) and Decision Curve Analysis (DCA). The training and testing sets included 68/72 VCFs and 32/28 patients with VOs, respectively. There were no statistically significant differences in clinical characteristics such as age, sex, body mass index (BMI), CRP levels, ESR, and lesion stage between the training and testing sets (P > 0.05). A total of 873 radiomic features and 6 clinical features were extracted. After screening, 10 optimal features were selected to build Model 1, while 5 clinical features were used to build Model 2. Models 1 and 2 were combined to create Model 3 and a nomogram was plotted. All the three models were constructed using Logistic Regression algorithms. Model 3 achieved a higher AUC than Models 1 and 2 for both the training and testing sets: 0.946 > 0.904 > 0.871 (training) and 0.900 > 0.854 > 0.818 (testing), respectively. Additionally, the DCA indicated that Model 3 had better clinical utility than Models 1 and 2. Our analysis indicated that the radiomics nomogram, combined with radiomic and clinical features, provides significant clinical guidance in distinguishing vertebral compression fractures from spinal vertebral osteomyelitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
hybrid_orbital关注了科研通微信公众号
2秒前
2秒前
Chloe发布了新的文献求助10
2秒前
3秒前
sxkoala应助sxl采纳,获得30
3秒前
4秒前
无花果应助猪猪hero采纳,获得10
5秒前
5秒前
上官若男应助wgl200212采纳,获得10
5秒前
脑洞疼应助学渣采纳,获得10
6秒前
科研通AI6应助科研螺丝采纳,获得10
7秒前
opbillows发布了新的文献求助10
7秒前
10秒前
田様应助靳bb采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
管紫南完成签到,获得积分20
13秒前
HHHHH完成签到,获得积分10
13秒前
WSR完成签到 ,获得积分10
14秒前
14秒前
opbillows完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
15秒前
小吴骑士发布了新的文献求助10
15秒前
15秒前
16秒前
猪猪hero发布了新的文献求助10
16秒前
16秒前
管紫南发布了新的文献求助10
16秒前
qqq发布了新的文献求助10
16秒前
17秒前
CodeCraft应助直率猕猴桃采纳,获得10
17秒前
19秒前
学渣发布了新的文献求助10
20秒前
20秒前
wyling发布了新的文献求助10
21秒前
解语花发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112404
求助须知:如何正确求助?哪些是违规求助? 4320241
关于积分的说明 13461490
捐赠科研通 4151345
什么是DOI,文献DOI怎么找? 2274687
邀请新用户注册赠送积分活动 1276589
关于科研通互助平台的介绍 1214700