Multi-View Multi-Label Classification via View-Label Matching Selection

多标签分类 选择(遗传算法) 计算机科学 匹配(统计) 人工智能 标签外使用 模式识别(心理学) 机器学习 数学 生物 统计 生物信息学
作者
Wei Hao,Yongjian Deng,Qiuru Hai,Yuena Lin,Zhen Yang,Gengyu Lyu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (20): 21456-21464
标识
DOI:10.1609/aaai.v39i20.35447
摘要

In multi-view multi-label classification (MVML), each object is described by several heterogeneous views while annotated with multiple related labels. The key to learn from such complicate data lies in how to fuse cross-view features and explore multi-label correlations, while accordingly obtain correct assignments between each object and its corresponding labels. In this paper, we proposed an advanced MVML method named VAMS, which treats each object as a bag of views and reformulates the task of MVML as a “view-label” matching selection problem. Specifically, we first construct an object graph and a label graph respectively. In the object graph, nodes represent the multi-view representation of an object, and each view node is connected to its K-nearest neighbor within its own view. In the label graph, nodes represent the semantic representation of a label. Then, we connect each view node with all labels to generate the unified “view-label” matching graph. Afterwards, a graph network block is introduced to aggregate and update all nodes and edges on the matching graph, and further generating a structural representation that fuses multi-view heterogeneity and multi-label correlations for each view and label. Finally, we derive a prediction score for each view-label matching and select the optimal matching via optimizing a weighted cross-entropy loss. Extensive results on various datasets have verified that our proposed VAMS can achieve superior or comparable performance against state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangpeng完成签到,获得积分10
刚刚
精明黄蜂完成签到 ,获得积分10
1秒前
1秒前
szmsnail完成签到,获得积分10
1秒前
思源应助淡定幼荷采纳,获得10
1秒前
平常树叶完成签到,获得积分10
1秒前
科研小白完成签到,获得积分10
1秒前
顺心紫南完成签到,获得积分10
1秒前
暴富完成签到,获得积分10
1秒前
浪子应助Bouches采纳,获得10
2秒前
瘦瘦的铅笔完成签到 ,获得积分10
2秒前
maxinghrr完成签到,获得积分0
2秒前
兴奋鼠标完成签到,获得积分10
2秒前
愤怒的卓越完成签到,获得积分10
2秒前
2秒前
bkagyin应助高高采纳,获得10
3秒前
乐乐应助星光采纳,获得10
3秒前
PUTIDAXIAN完成签到,获得积分10
3秒前
会飞的生菜完成签到,获得积分10
3秒前
浅陌初心完成签到 ,获得积分10
4秒前
Hesper完成签到 ,获得积分10
4秒前
4秒前
欢喜傲易完成签到,获得积分10
4秒前
淡然鸡翅完成签到,获得积分10
4秒前
传奇3应助apple采纳,获得10
5秒前
乔治完成签到,获得积分10
5秒前
礼赞完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
夏明明完成签到,获得积分10
5秒前
5秒前
不安映雁完成签到,获得积分10
5秒前
小羊先生完成签到 ,获得积分10
6秒前
久9完成签到 ,获得积分10
6秒前
无极微光应助xiaoliu采纳,获得20
6秒前
FashionBoy应助段绮彤采纳,获得10
6秒前
凌奕添完成签到 ,获得积分10
7秒前
woyaojiayou完成签到,获得积分10
7秒前
zhazd发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067407
求助须知:如何正确求助?哪些是违规求助? 4289187
关于积分的说明 13362471
捐赠科研通 4108690
什么是DOI,文献DOI怎么找? 2249847
邀请新用户注册赠送积分活动 1255305
关于科研通互助平台的介绍 1187828