Heterogeneous Mutual Knowledge Distillation for Wearable Human Activity Recognition

可穿戴计算机 计算机科学 人机交互 蒸馏 活动识别 人工智能 化学 色谱法 嵌入式系统
作者
Zhiwen Xiao,Huanlai Xing,Rong Qu,Hui Li,Xinzhou Cheng,Lexi Xu,Feng Li,Qian Wan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3556317
摘要

Recently, numerous deep learning algorithms have addressed wearable human activity recognition (HAR), but they often struggle with efficient knowledge transfer to lightweight models for mobile devices. Knowledge distillation (KD) is a popular technique for model compression, transferring knowledge from a complex teacher to a compact student. Most existing KD algorithms consider homogeneous architectures, hindering performance in heterogeneous setups. This is an under-explored area in wearable HAR. To bridge this gap, we propose a heterogeneous mutual KD (HMKD) framework for wearable HAR. HMKD establishes mutual learning within the intermediate and output layers of both teacher and student models. To accommodate substantial structural differences between teacher and student, we employ a weighted ensemble feature approach to merge the features from their intermediate layers, enhancing knowledge exchange within them. Experimental results on the HAPT, WISDM, and UCI_HAR datasets show HMKD outperforms ten state-of-the-art KD algorithms in terms of classification accuracy. Notably, with ResNetLSTMaN as the teacher and MLP as the student, HMKD increases by 9.19% in MLP's $F_{1}$ score on the HAPT dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆包发布了新的文献求助10
刚刚
634301059完成签到 ,获得积分10
3秒前
栗子完成签到 ,获得积分10
3秒前
4秒前
Green完成签到,获得积分10
4秒前
CodeCraft应助FJ采纳,获得10
4秒前
稳重紫蓝完成签到 ,获得积分10
6秒前
7秒前
7秒前
小当家完成签到,获得积分10
8秒前
闪闪半芹完成签到,获得积分20
8秒前
Improve完成签到,获得积分10
9秒前
是个憨憨完成签到,获得积分10
10秒前
pan发布了新的文献求助10
10秒前
闪闪半芹发布了新的文献求助10
11秒前
劣根完成签到,获得积分10
11秒前
小豆包完成签到,获得积分10
12秒前
mmmmmMM完成签到,获得积分10
14秒前
标致幻然完成签到 ,获得积分10
16秒前
17秒前
朴素海亦完成签到 ,获得积分10
19秒前
还单身的雅琴完成签到,获得积分10
19秒前
21秒前
21秒前
中岛悠斗完成签到,获得积分10
21秒前
创不可贴完成签到,获得积分10
21秒前
zdy完成签到,获得积分10
22秒前
exy完成签到,获得积分10
22秒前
YY发布了新的文献求助10
23秒前
25秒前
光的本质完成签到,获得积分10
25秒前
共享精神应助tough采纳,获得10
25秒前
如初完成签到,获得积分10
26秒前
fy发布了新的文献求助10
26秒前
www完成签到,获得积分10
26秒前
平淡亦云完成签到,获得积分20
27秒前
WXR完成签到,获得积分10
27秒前
WUHUIWEN完成签到,获得积分10
27秒前
rhq完成签到,获得积分10
28秒前
LiChard完成签到 ,获得积分10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308