Neural Network-based Automated Classification of 18F-FDG PET/CT Lesions and Prognosis Prediction in Nasopharyngeal Carcinoma Without Distant Metastasis

医学 鼻咽癌 比例危险模型 组织病理学 转移 放射科 内科学 肿瘤科 金标准(测试) 正电子发射断层摄影术 生存分析 核医学 癌症 放射治疗 病理
作者
Yuhu Lv,Danzha Zheng,Ruiping Wang,Zhangyongxue Zhou,Zairong Gao,Xiaoli Lan,Chunxia Qin
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rlu.0000000000005942
摘要

Purpose: To evaluate the diagnostic performance of the PET Assisted Reporting System (PARS) in nasopharyngeal carcinoma (NPC) patients without distant metastasis, and to investigate the prognostic significance of the metabolic parameters. Patients and Methods: Eighty-three NPC patients who underwent pretreatment 18 F-FDG PET/CT were retrospectively collected. First, the sensitivity, specificity, and accuracy of PARS for diagnosing malignant lesions were calculated, using histopathology as the gold standard. Next, metabolic parameters of the primary tumor were derived using both PARS and manual segmentation. The differences and consistency between the 2 methods were analyzed. Finally, the prognostic value of PET metabolic parameters was evaluated. Prognostic analysis of progression-free survival (PFS) and overall survival (OS) was conducted. Results: PARS demonstrated high patient-based accuracy (97.2%), sensitivity (88.9%), and specificity (97.4%), and 96.7%, 84.0%, and 96.9% based on lesions. Manual segmentation yielded higher metabolic tumor volume (MTV) and total lesion glycolysis (TLG) than PARS. Metabolic parameters from both methods were highly correlated and consistent. ROC analysis showed metabolic parameters exhibited differences in prognostic prediction, but generally performed well in predicting 3-year PFS and OS overall. MTV and age were independent prognostic factors; Cox proportional-hazards models incorporating them showed significant predictive improvements when combined. Kaplan-Meier analysis confirmed better prognosis in the low-risk group based on combined indicators (χ² = 42.25, P < 0.001; χ² = 20.44, P < 0.001). Conclusions: Preliminary validation of PARS in NPC patients without distant metastasis shows high diagnostic sensitivity and accuracy for lesion identification and classification, and metabolic parameters correlate well with manual. MTV reflects prognosis, and its combination with age enhances prognostic prediction and risk stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐正怡完成签到 ,获得积分0
2秒前
哈哈哈完成签到 ,获得积分10
2秒前
蛋妮完成签到 ,获得积分10
3秒前
652183758完成签到 ,获得积分10
8秒前
李大宝完成签到 ,获得积分10
8秒前
缥缈的闭月完成签到,获得积分10
11秒前
ran完成签到 ,获得积分10
17秒前
佳期如梦完成签到 ,获得积分10
19秒前
21秒前
22秒前
25秒前
点墨完成签到 ,获得积分10
25秒前
fuyuhaoy完成签到,获得积分10
26秒前
爱撒娇的孤丹完成签到 ,获得积分10
28秒前
30秒前
西山菩提完成签到,获得积分10
34秒前
35秒前
DE2022发布了新的文献求助10
36秒前
36秒前
科研顺利完成签到,获得积分10
41秒前
冰雨Flory完成签到,获得积分10
43秒前
曹国庆完成签到 ,获得积分10
49秒前
51秒前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
研友_LNMmW8发布了新的文献求助10
1分钟前
心静自然好完成签到 ,获得积分10
1分钟前
五月完成签到 ,获得积分10
1分钟前
冷傲千秋完成签到 ,获得积分10
1分钟前
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
结实凌瑶完成签到 ,获得积分10
1分钟前
月球宇航员完成签到,获得积分10
1分钟前
Silence完成签到 ,获得积分10
1分钟前
ni完成签到 ,获得积分10
1分钟前
叶子完成签到 ,获得积分10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859