Neural Network-based Automated Classification of 18F-FDG PET/CT Lesions and Prognosis Prediction in Nasopharyngeal Carcinoma Without Distant Metastasis

医学 鼻咽癌 比例危险模型 组织病理学 远处转移 转移 放射科 内科学 肿瘤科 金标准(测试) 正电子发射断层摄影术 生存分析 阶段(地层学) 病变 总体生存率 癌症 代谢活性 诊断准确性 试验预测值 放射治疗 生物标志物 原发性肿瘤 回顾性队列研究 病理 预测值 临床意义 正谓词值
作者
Yuhu Lv,Danzha Zheng,Ruiping Wang,Zhangyongxue Zhou,Zairong Gao,Xiaoli Lan,Chunxia Qin
出处
期刊:Clinical Nuclear Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:50 (8): 721-730
标识
DOI:10.1097/rlu.0000000000005942
摘要

Purpose: To evaluate the diagnostic performance of the PET Assisted Reporting System (PARS) in nasopharyngeal carcinoma (NPC) patients without distant metastasis, and to investigate the prognostic significance of the metabolic parameters. Patients and Methods: Eighty-three NPC patients who underwent pretreatment 18 F-FDG PET/CT were retrospectively collected. First, the sensitivity, specificity, and accuracy of PARS for diagnosing malignant lesions were calculated, using histopathology as the gold standard. Next, metabolic parameters of the primary tumor were derived using both PARS and manual segmentation. The differences and consistency between the 2 methods were analyzed. Finally, the prognostic value of PET metabolic parameters was evaluated. Prognostic analysis of progression-free survival (PFS) and overall survival (OS) was conducted. Results: PARS demonstrated high patient-based accuracy (97.2%), sensitivity (88.9%), and specificity (97.4%), and 96.7%, 84.0%, and 96.9% based on lesions. Manual segmentation yielded higher metabolic tumor volume (MTV) and total lesion glycolysis (TLG) than PARS. Metabolic parameters from both methods were highly correlated and consistent. ROC analysis showed metabolic parameters exhibited differences in prognostic prediction, but generally performed well in predicting 3-year PFS and OS overall. MTV and age were independent prognostic factors; Cox proportional-hazards models incorporating them showed significant predictive improvements when combined. Kaplan-Meier analysis confirmed better prognosis in the low-risk group based on combined indicators (χ² = 42.25, P < 0.001; χ² = 20.44, P < 0.001). Conclusions: Preliminary validation of PARS in NPC patients without distant metastasis shows high diagnostic sensitivity and accuracy for lesion identification and classification, and metabolic parameters correlate well with manual. MTV reflects prognosis, and its combination with age enhances prognostic prediction and risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让超短裙完成签到,获得积分10
刚刚
zhu完成签到,获得积分10
1秒前
含蓄的海云完成签到,获得积分10
1秒前
LFY完成签到,获得积分10
1秒前
xiaozeng完成签到,获得积分10
1秒前
YifanWang应助苗条自行车采纳,获得30
2秒前
Schwann翠星石完成签到,获得积分10
2秒前
武雨寒发布了新的文献求助10
2秒前
2秒前
zmr123发布了新的文献求助10
3秒前
yorxx完成签到,获得积分10
4秒前
xhhhh完成签到,获得积分10
4秒前
5秒前
冬雪完成签到,获得积分10
7秒前
嘻嘻哈哈发布了新的文献求助10
8秒前
无花果应助Vonnie采纳,获得10
8秒前
curtainai完成签到,获得积分0
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
情怀应助甜美的瑾瑜采纳,获得10
10秒前
10秒前
完美世界应助随便取采纳,获得10
11秒前
11秒前
11秒前
12秒前
Clarence完成签到,获得积分10
12秒前
xiaobai123456发布了新的文献求助10
12秒前
13秒前
13秒前
承淮发布了新的文献求助10
13秒前
13秒前
愿自己完成签到,获得积分10
14秒前
王亚娟完成签到,获得积分10
15秒前
打打应助jin采纳,获得10
15秒前
萱棚发布了新的文献求助10
16秒前
16秒前
呜辣辣发布了新的文献求助10
17秒前
MiriamYu完成签到,获得积分10
17秒前
伶俐的铁身完成签到,获得积分10
18秒前
小白发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600240
求助须知:如何正确求助?哪些是违规求助? 4685922
关于积分的说明 14840705
捐赠科研通 4675920
什么是DOI,文献DOI怎么找? 2538610
邀请新用户注册赠送积分活动 1505696
关于科研通互助平台的介绍 1471162