Development of Interactive Nomograms for Predicting Short-Term Survival in ICU Patients with Aplastic Anemia

列线图 再生障碍性贫血 期限(时间) 医学 儿科 重症监护医学 肿瘤科 内科学 骨髓 物理 量子力学
作者
Junyi Fan,Shu‐Heng Chen,Kamiar Alaei,Greg Placencia,Elham Pishgar,Maryam Pishgar
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2025.02.25.25322896
摘要

Background:Aplastic anemia is a severe hematologic disorder marked by pancytopenia and bone marrow failure. ICU admission often reflects disease progression or complications requiring critical care. Predicting short-term survival in these patients is vital for individualized treatment and resource optimization. Nomograms provide a practical tool for integrating clinical parameters, offering accurate visualized survival predictions to guide decision-making in patients with aplastic anemia in the ICU. Methods:Using the MIMIC-IV database, we identified ICU patients diagnosed with aplastic anemia. From thousands of available variables, we extracted data across five dimensions: demographic, synthetic indicators, laboratory events, comorbidities, and drug usage. Based on existing studies of aplastic anemia, more than 400 variables were further refined and machine learning techniques were applied to identify the seven most effective predictors for modeling. Preprocessing was performed using machine learning approaches, and the feasibility of these predictors was validated through additional classification and regression models, the verification method is AUROC. Furthermore, external validation was performed using data from the eICU Collaborative Research Database to assess the generalizability of our models.The interactive nomograms were constructed using logistic regression (LR) to predict mortality rates at 7 days, 14 days, and 28 days in patients with aplastic anemia. Results: A total of 1,662 patients diagnosed with aplastic anemia were included in this study, with a 7:3 ratio split into training and testing cohorts. The logistic regression model demonstrated strong predictive performance, achieving AUC values of 0.8227, 0.8311, and 0.8298 for 7-day, 14-day, and 28-day mortality predictions, respectively. External validation using the eICU database further confirmed the model's generalizability, with AUC values of 0.7391, 0.7119, and 0.7093. These results highlight the model's stability and effectiveness in predicting short-term survival in aplastic anemia patients. Conclusion:A set of seven predictors, led by APS III, proved effective for modeling short-term survival in aplastic anemia patients. Using these predictors, Cox and logistic regression models generated nomograms that accurately predict 7-day, 14-day, and 28-day mortality. These tools can support clinicians in personalized risk assessment and decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
研友_8Y26PL发布了新的文献求助10
2秒前
贪玩飞珍发布了新的文献求助10
2秒前
街上的狗完成签到,获得积分0
2秒前
听风随影发布了新的文献求助10
3秒前
慕青应助刘鑫采纳,获得10
3秒前
香蕉觅云应助zygclwl采纳,获得10
3秒前
xiaoli发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
revo完成签到,获得积分10
6秒前
万能图书馆应助听风随影采纳,获得10
8秒前
Ffgg发布了新的文献求助10
8秒前
124完成签到,获得积分10
8秒前
hope完成签到,获得积分10
8秒前
一心完成签到,获得积分10
8秒前
孟严青发布了新的文献求助10
9秒前
隐形曼青应助mm采纳,获得10
9秒前
华仔应助细心的从菡采纳,获得10
9秒前
10秒前
10秒前
Meng关注了科研通微信公众号
10秒前
小马甲应助研友_Z63G18采纳,获得10
10秒前
搜集达人应助Tan采纳,获得10
11秒前
七面东风完成签到,获得积分10
12秒前
masterchen完成签到,获得积分10
13秒前
aabbccc发布了新的文献求助10
13秒前
甜晞完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
qiuxiu完成签到,获得积分10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
qin完成签到,获得积分10
15秒前
佳无夜完成签到,获得积分10
16秒前
优秀的火发布了新的文献求助10
17秒前
洁净幻竹完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708665
求助须知:如何正确求助?哪些是违规求助? 5189265
关于积分的说明 15254544
捐赠科研通 4861584
什么是DOI,文献DOI怎么找? 2609540
邀请新用户注册赠送积分活动 1560064
关于科研通互助平台的介绍 1517810