TC-Net: A Transformer Capsule Network for EEG-based emotion recognition

计算机科学 脑电图 卷积神经网络 模式识别(心理学) 人工智能 变压器 语音识别 特征提取 深度学习 电压 工程类 神经科学 心理学 电气工程
作者
Yi Wei,Yü Liu,Chang Li,Juan Cheng,Rencheng Song,Xun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106463-106463 被引量:62
标识
DOI:10.1016/j.compbiomed.2022.106463
摘要

Deep learning has recently achieved remarkable success in emotion recognition based on Electroencephalogram (EEG), in which convolutional neural networks (CNNs) are the mostly used models. However, due to the local feature learning mechanism, CNNs have difficulty in capturing the global contextual information involving temporal domain, frequency domain, intra-channel and inter-channel. In this paper, we propose a Transformer Capsule Network (TC-Net), which mainly contains an EEG Transformer module to extract EEG features and an Emotion Capsule module to refine the features and classify the emotion states. In the EEG Transformer module, EEG signals are partitioned into non-overlapping windows. A Transformer block is adopted to capture global features among different windows, and we propose a novel patch merging strategy named EEG-PatchMerging (EEG-PM) to better extract local features. In the Emotion Capsule module, each channel of the EEG feature maps is encoded into a capsule to better characterize the spatial relationships among multiple features. Experimental results on two popular datasets (i.e., DEAP and DREAMER) demonstrate that the proposed method achieves the state-of-the-art performance in the subject-dependent scenario. Specifically, on DEAP (DREAMER), our TC-Net achieves the average accuracies of 98.76% (98.59%), 98.81% (98.61%) and 98.82% (98.67%) at valence, arousal and dominance dimensions, respectively. Moreover, the proposed TC-Net also shows high effectiveness in multi-state emotion recognition tasks using the popular VA and VAD models. The main limitation of the proposed model is that it tends to obtain relatively low performance in the cross-subject recognition task, which is worthy of further study in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pengliao完成签到,获得积分10
刚刚
1秒前
田様应助专注巨人采纳,获得10
1秒前
2秒前
2秒前
科研通AI5应助青原采纳,获得10
3秒前
传奇3应助spring采纳,获得20
3秒前
Leo发布了新的文献求助30
4秒前
zhangni完成签到,获得积分10
4秒前
4秒前
斑马发布了新的文献求助10
5秒前
太阳完成签到,获得积分10
6秒前
LIIII发布了新的文献求助10
6秒前
6秒前
7秒前
鲁以筠完成签到,获得积分10
8秒前
太阳发布了新的文献求助10
9秒前
山东老铁发布了新的文献求助10
11秒前
11秒前
11秒前
14秒前
14秒前
14秒前
LIIII完成签到,获得积分10
15秒前
15秒前
15秒前
Forizix发布了新的文献求助10
15秒前
我是老大应助斑马采纳,获得10
17秒前
时柚完成签到,获得积分20
17秒前
rumengzhuo完成签到,获得积分10
17秒前
锦江完成签到,获得积分10
17秒前
18秒前
Owen应助山东老铁采纳,获得10
18秒前
18秒前
shirleyxzz发布了新的文献求助10
19秒前
22秒前
残幻应助时柚采纳,获得10
23秒前
24秒前
25秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818644
求助须知:如何正确求助?哪些是违规求助? 3361692
关于积分的说明 10413776
捐赠科研通 3079904
什么是DOI,文献DOI怎么找? 1693544
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248