Regression Trees on Grassmann Manifold for Adapting Reduced-Order Models

交货地点 线性子空间 子空间拓扑 基础(线性代数) 数学 格拉斯曼的 稳健性(进化) 正交基 算法 数学优化 树(集合论) 计算机科学 应用数学 人工智能 几何学 组合数学 生物化学 量子力学 生物 基因 物理 农学 化学
作者
Xiao Liu,Xinchao Liu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (3): 1318-1333
标识
DOI:10.2514/1.j062180
摘要

Low-dimensional and computationally less-expensive reduced-order models (ROMs) have been widely used to capture the dominant behaviors of high-4dimensional systems. An ROM can be obtained, using the well-known proper orthogonal decomposition (POD), by projecting the full-order model to a subspace spanned by modal basis modes that are learned from experimental, simulated, or observational data, i.e., training data. However, the optimal basis can change with the parameter settings. When an ROM, constructed using the POD basis obtained from training data, is applied to new parameter settings, the model often lacks robustness against the change of parameters in design, control, and other real-time operation problems. This paper proposes to use regression trees on Grassmann manifold to learn the mapping between parameters and POD bases that span the low-dimensional subspaces onto which full-order models are projected. Motivated by the observation that a subspace spanned by a POD basis can be viewed as a point in the Grassmann manifold, we propose to grow a tree by repeatedly splitting the tree node to maximize the Riemannian distance between the two subspaces spanned by the predicted POD bases on the left and right daughter nodes. Five numerical examples are presented to comprehensively demonstrate the performance of the proposed method, and compare the proposed tree-based method to the existing interpolation method for POD basis and the use of global POD basis. The results show that the proposed tree-based method is capable of establishing the mapping between parameters and POD bases, and thus adapt ROMs for new parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
六月完成签到 ,获得积分10
1秒前
111完成签到,获得积分10
1秒前
1秒前
欣喜谷槐完成签到,获得积分10
1秒前
2秒前
能干的幻丝完成签到,获得积分10
2秒前
科研狗发布了新的文献求助10
3秒前
李有钱发布了新的文献求助10
3秒前
摇光完成签到,获得积分10
3秒前
可爱的函函应助小不点点采纳,获得30
3秒前
Zj完成签到,获得积分10
3秒前
云馨完成签到,获得积分10
4秒前
klz发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Mikey发布了新的文献求助10
5秒前
5秒前
李健应助远志采纳,获得10
5秒前
哇卡卡发布了新的文献求助10
6秒前
宇哥发布了新的文献求助10
7秒前
7秒前
魔幻三问完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
BSDL发布了新的文献求助10
9秒前
Sally发布了新的文献求助10
9秒前
温暖芷文发布了新的文献求助10
9秒前
9秒前
简让完成签到 ,获得积分10
9秒前
努力的研究生完成签到,获得积分10
10秒前
bkagyin应助生活的高手采纳,获得10
10秒前
CipherSage应助遇见馅儿饼采纳,获得10
10秒前
FF发布了新的文献求助30
11秒前
ZMH发布了新的文献求助10
12秒前
cyrong发布了新的文献求助10
12秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345103
关于积分的说明 10323728
捐赠科研通 3061700
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462