Accelerating magnetotelluric forward modeling with deep learning: Conv-BiLSTM and D-LinkNet

大地电磁法 计算 计算机科学 深度学习 卷积(计算机科学) 卷积神经网络 一般化 人工神经网络 算法 人工智能 比例(比率) 模式识别(心理学) 数学 工程类 电气工程 物理 数学分析 电阻率和电导率 量子力学
作者
Fei Deng,Siling Yu,Xuben Wang,Zhiheng Guo
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): E69-E77 被引量:1
标识
DOI:10.1190/geo2021-0667.1
摘要

Magnetotelluric forward modeling is important for exploring underground electromagnetic anomalies. Although directly solving the electromagnetic wave equation has high accuracy, its computational cost is usually unaffordable for large-scale models. A neural network (NN) can increase the computation of the magnetotelluric forward modeling; however, its numerical accuracy is limited owing to the use of a simple network structure and small-scale training data sets. We have increased the computational efficiency of the magnetotelluric forward modeling by deep learning based on cyclic NN and full convolution NN models. First, we have extracted the basic characteristics of the 2D-magnetotelluric forward modeling, which were important for selecting and optimizing the network. Then, we have developed two forward network models: convolutional bidirectional long short-term memory (Conv-BiLSTM) and LinkNet with pretrained encoder and dilated convolution (D-LinkNet). Next, we have constructed data sets of large-scale multiple anomalies. Finally, we have tested our models using various examples. Existing methods only consider a single anomaly and have low accuracy; in contrast, our methods can handle multianomaly models because they have strong generalization, even though the training is based on models with two or three anomalies. Numerical experiments find that the average accuracy of the Conv-BiLSTM and D-LinkNet forward network models was 87.5% and 95.3%, respectively. Compared with D-LinkNet, the Conv-BiLSTM network model has lower accuracy but higher computational efficiency. Our deep-learning schemes can significantly reduce the computational burdens of the magnetotelluric forward modeling, and thus allow us to perform swift inversions of multianomaly models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IngridX完成签到 ,获得积分10
4秒前
娜行完成签到 ,获得积分10
5秒前
风-FBDD完成签到,获得积分10
5秒前
锂离子完成签到,获得积分10
6秒前
cy完成签到,获得积分10
7秒前
舟行碧波上完成签到,获得积分10
10秒前
张土豆完成签到 ,获得积分10
13秒前
要开心完成签到 ,获得积分10
15秒前
ran完成签到 ,获得积分10
16秒前
张医生完成签到,获得积分10
16秒前
ZhouYW完成签到,获得积分0
16秒前
游艺完成签到 ,获得积分10
17秒前
赵雪完成签到,获得积分10
18秒前
Tmp完成签到,获得积分10
19秒前
可爱的函函应助zhang采纳,获得10
20秒前
yuan完成签到,获得积分10
20秒前
我是老大应助自然映梦采纳,获得10
23秒前
momo完成签到,获得积分10
27秒前
kalani完成签到,获得积分10
27秒前
29秒前
31秒前
32秒前
zhang发布了新的文献求助10
32秒前
星星月完成签到 ,获得积分10
33秒前
充电宝应助司_采纳,获得10
35秒前
自然映梦发布了新的文献求助10
37秒前
懒猫完成签到,获得积分10
39秒前
酷酷的王完成签到 ,获得积分10
39秒前
yy爱科研完成签到,获得积分10
41秒前
清脆愫完成签到 ,获得积分10
43秒前
Wang完成签到,获得积分10
44秒前
cdercder应助小黄采纳,获得10
45秒前
47秒前
刚子完成签到 ,获得积分10
48秒前
49秒前
彩色映雁完成签到 ,获得积分10
50秒前
司_发布了新的文献求助10
51秒前
a雪橙完成签到 ,获得积分10
51秒前
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840885
求助须知:如何正确求助?哪些是违规求助? 3382790
关于积分的说明 10526580
捐赠科研通 3102659
什么是DOI,文献DOI怎么找? 1708933
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632