Development and field evaluation of a robotic harvesting system for plucking high-quality tea

点云 人工智能 计算机科学 领域(数学) 实时计算 模拟 农业工程 计算机视觉 工程类 数学 纯数学 地貌学 地质学
作者
Yatao Li,Shunkai Wu,Leiying He,Junhua Tong,Runmao Zhao,Jiangming Jia,Jianneng Chen,Chuanyu Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107659-107659 被引量:28
标识
DOI:10.1016/j.compag.2023.107659
摘要

The critical issue of the robotic harvesting high-quality tea is to realize tea shoot detection, plucking point localization, and motion planning. In addition, the accuracy and efficiency of the robotic plucking of high-quality tea in the field are essential. Therefore, a robotic harvesting system is proposed in this paper by combining deep learning, point cloud processing, and spatial path planning. First, the deep learning method and the compressed YOLOv3 network are used to quickly and accurately identify tea shoots. Second, an efficient point cloud processing-based 3D localization algorithm for high-quality tea plucking points was proposed. The genetic algorithm is then used to shorten the end-effector's motion path by optimizing the plucking sequences. Eventually, a harvester robot with a parallel manipulator was developed to conduct field plucking experiments and evaluate the effectiveness of the proposed harvesting system. All experimental results demonstrate that the success rates of detection, localization, and motion plucking are 85.16 %, 78.90 %, and 80.23 %, respectively. Furthermore, the overall process harvesting success rate is 53.91 %, and the average plucking time for a single shoot is 2.233 s. Therefore, the proposed harvesting approach can provide technical support for the precise and rapid harvesting of high-quality tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助杯子采纳,获得30
刚刚
学不会完成签到,获得积分10
1秒前
1秒前
2秒前
ferny完成签到,获得积分10
3秒前
xx发布了新的文献求助10
3秒前
3秒前
李昕123发布了新的文献求助30
4秒前
hh发布了新的文献求助10
4秒前
科研小白_李完成签到,获得积分10
5秒前
研友_ngKyqn发布了新的文献求助10
6秒前
yangjiafengzi发布了新的文献求助200
6秒前
8秒前
CodeCraft应助xx采纳,获得10
8秒前
维特完成签到,获得积分10
8秒前
9秒前
zeng发布了新的文献求助10
9秒前
杯子完成签到,获得积分20
9秒前
10秒前
科研通AI5应助奇遇采纳,获得30
11秒前
12秒前
HHH完成签到,获得积分10
12秒前
13秒前
杯子发布了新的文献求助30
13秒前
xuezha发布了新的文献求助10
14秒前
15秒前
15秒前
李健应助牛司采纳,获得10
15秒前
彭于晏应助饭饭采纳,获得10
15秒前
HHH发布了新的文献求助10
16秒前
Herman_Chen发布了新的文献求助10
16秒前
英俊的铭应助euy采纳,获得10
17秒前
丘比特应助西瓜采纳,获得10
17秒前
Ly啦啦啦发布了新的文献求助10
18秒前
现代千易完成签到 ,获得积分10
18秒前
稳重的菠萝应助zeng采纳,获得10
20秒前
21秒前
情怀应助hh采纳,获得10
21秒前
21秒前
LUMEN发布了新的文献求助10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349