清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrated models for prediction and global factors sensitivity analysis of ultrafiltration (UF) membrane fouling: statistics and machine learning approach

加权 膜污染 过程(计算) 机器学习 随机森林 计算机科学 结垢 人工智能 灵敏度(控制系统) 统计 数据挖掘 数学 工程类 化学 电子工程 生物化学 医学 放射科 操作系统
作者
Boyuan Deng,Yang Deng,Min Liu,Ying Chen,Qinglian Wu,Hongguang Guo
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:313: 123326-123326 被引量:21
标识
DOI:10.1016/j.seppur.2023.123326
摘要

In this work, machine learning was employed to quantitatively describe nonlinear ultrafiltration membrane fouling behaviors, from existing data process modeling, process analysis and predictive modeling of unknown data prediction and feature analysis. Instead of using the secondary data calculation that the traditional model required, direct observation data is used for modeling and analysis. This simplifies the prediction process and lowers the cost of the prediction. Besides, the problem that the long-term serial data and the short-term rapid change process were difficult to quantify has been resolved. Two distinct prediction models were established: one is semi-automatic prediction of future data with existing data based on statistics (for long-term study and prediction), and the other is fully autonomous prediction based on tree model (for short-term). 2520 12-dimentional laboratory measurements were collected enabling precise modeling prediction (less than 4 % error) for 50 % of the future timeline through supervised learning of process modeling. Results revealed that the UF membrane had a strong “rejection” impact when it came into contact with a polluted environment, which caused an inconsistent self-pollution coefficient and rapid fouling at initially. For process analysis, a global variable-based weighting factor sensitivity analysis and a statistically significant likelihood estimation were conducted using random put-back samples to accurately predict membrane fouling in an uncertain environment (MSE = 0.2 to 0.26). A high-dimensional variable-specific real-time weighting analysis was derived for inform lifespan extension of the UF membrane at environmental relevant conditions. Overall, this study illustrates the feasibility and interpretability of machine learning-based data-driven approaches in quantitatively describing and understanding nonlinear complex dynamics in membrane fouling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥的土豆完成签到,获得积分10
5秒前
13秒前
lingling完成签到 ,获得积分10
13秒前
俞若枫发布了新的文献求助10
27秒前
28秒前
34秒前
HHM完成签到,获得积分10
35秒前
yindi1991完成签到 ,获得积分10
50秒前
李健应助科研通管家采纳,获得10
51秒前
51秒前
Lina完成签到 ,获得积分10
1分钟前
俞若枫完成签到,获得积分10
1分钟前
xun完成签到,获得积分20
1分钟前
田様应助Luke采纳,获得10
1分钟前
BMG完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
cityhunter7777完成签到,获得积分10
1分钟前
洋芋饭饭完成签到,获得积分10
1分钟前
朝夕之晖完成签到,获得积分10
1分钟前
qq完成签到,获得积分10
1分钟前
Syan完成签到,获得积分10
1分钟前
BowieHuang完成签到,获得积分0
1分钟前
runtang完成签到,获得积分10
1分钟前
张浩林完成签到,获得积分10
1分钟前
Temperature完成签到,获得积分10
1分钟前
清水完成签到,获得积分10
1分钟前
yzz完成签到,获得积分10
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
prrrratt完成签到,获得积分10
1分钟前
ys1008完成签到,获得积分10
1分钟前
呵呵哒完成签到,获得积分10
1分钟前
喜喜完成签到,获得积分10
1分钟前
675完成签到,获得积分10
1分钟前
112222完成签到 ,获得积分10
1分钟前
真的OK完成签到,获得积分0
1分钟前
美满惜寒完成签到,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
guoyufan完成签到,获得积分10
1分钟前
王jyk完成签到,获得积分10
1分钟前
阳光完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645003
求助须知:如何正确求助?哪些是违规求助? 4766938
关于积分的说明 15026102
捐赠科研通 4803370
什么是DOI,文献DOI怎么找? 2568271
邀请新用户注册赠送积分活动 1525661
关于科研通互助平台的介绍 1485212