已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TinyML-Enabled Static Hand Gesture Recognition System Based on an Ultra-Low Resolution Infrared Array Sensor and a Low-Cost AI Chip

手势识别 计算机科学 手势 微控制器 人工智能 GSM演进的增强数据速率 边缘设备 嵌入式系统 过程(计算) 计算机视觉 计算机硬件 云计算 操作系统
作者
Wenji Dai,Le Zhou
标识
DOI:10.1109/prai55851.2022.9904109
摘要

Tiny machine learning (TinyML) aims to bring machine learning to the extreme edge, i.e., the microcontroller next to the sensor, which is expected to unlock new smart applications and pave the way for the last mile of artificial intelligence. Meanwhile, gesture recognition, as an important technology for realizing human-computer interaction (HCI), is of great significance for enabling convenient interaction between people and smart devices. Currently, the more mature static hand gesture recognition solutions include the use of data gloves or vision cameras to capture static hand gestures, which have many limitations in practical applications, such as cumbersome wearing process and performance affected by lighting conditions, and the processing platform mostly relies on cloud or edge servers. Considering the above limitations, in this paper, we design and implement a static hand gesture recognition system based on an ultra-low resolution infrared array sensor and a low-cost AI chip from the perspective of tiny machine learning applications. On the one hand, a fast method of collecting and labeling sensor data is introduced, and on the other hand, an ultra-lightweight neural network model is customized for the low-cost AI chip. The experimental results show that the static hand gesture recognition system designed and implemented in this paper has 99.14% recognition accuracy for several simple static hand gestures, and its inference time at the microcontroller side is around 35ms, which can achieve accurate and real-time recognition with low cost, strong anti-interference capability and good privacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Nitooker发布了新的文献求助10
5秒前
Parotodus完成签到,获得积分10
6秒前
Dannerys完成签到 ,获得积分10
6秒前
8秒前
8秒前
9秒前
朱文韬发布了新的文献求助10
12秒前
song发布了新的文献求助10
13秒前
自然砖家发布了新的文献求助30
14秒前
汉堡包应助Nitooker采纳,获得10
14秒前
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
从容芮应助科研通管家采纳,获得50
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
RC_Wang应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
19秒前
HH发布了新的文献求助10
22秒前
三千完成签到 ,获得积分10
23秒前
23秒前
25秒前
假期会发芽完成签到 ,获得积分10
25秒前
阳光凡儿发布了新的文献求助10
29秒前
华仔应助阿辉采纳,获得10
31秒前
Nitooker发布了新的文献求助10
32秒前
共享精神应助song采纳,获得10
34秒前
lulu发布了新的文献求助10
37秒前
爱听歌听南完成签到,获得积分10
38秒前
38秒前
小蘑菇应助Nitooker采纳,获得10
39秒前
星辰大海应助日光下采纳,获得10
42秒前
思源应助阳光凡儿采纳,获得10
43秒前
43秒前
科研通AI2S应助xueshudagongzai采纳,获得30
48秒前
ll完成签到 ,获得积分10
49秒前
49秒前
机智的飞鸟完成签到 ,获得积分10
57秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3900094
求助须知:如何正确求助?哪些是违规求助? 3444721
关于积分的说明 10836487
捐赠科研通 3169785
什么是DOI,文献DOI怎么找? 1751220
邀请新用户注册赠送积分活动 846632
科研通“疑难数据库(出版商)”最低求助积分说明 789298