亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A combination of radiomic features, clinic characteristics, and serum tumor biomarkers to predict the possibility of the micropapillary/solid component of lung adenocarcinoma

医学 列线图 腺癌 阶段(地层学) 回顾性队列研究 逻辑回归 内科学 放射科 肿瘤科 肺癌 肺腺癌 队列 接收机工作特性 癌症 古生物学 生物
作者
Xiaowei Xing,Liangping Li,Mingxia Sun,Xinhai Zhu,Yue Feng
出处
期刊:Therapeutic Advances in Respiratory Disease [SAGE]
卷期号:18 被引量:4
标识
DOI:10.1177/17534666241249168
摘要

Background: Invasive lung adenocarcinoma with MPP/SOL components has a poor prognosis and often shows a tendency to recurrence and metastasis. This poor prognosis may require adjustment of treatment strategies. Preoperative identification is essential for decision-making for subsequent treatment. Objective: This study aimed to preoperatively predict the probability of MPP/SOL components in lung adenocarcinomas by a comprehensive model that includes radiomics features, clinical characteristics, and serum tumor biomarkers. Design: A retrospective case control, diagnostic accuracy study. Methods: This study retrospectively recruited 273 patients (males: females, 130: 143; mean age ± standard deviation, 63.29 ± 10.03 years; range 21–83 years) who underwent resection of invasive lung adenocarcinoma. Sixty-one patients (22.3%) were diagnosed with lung adenocarcinoma with MPP/SOL components. Radiomic features were extracted from CT before surgery. Clinical, radiomic, and combined models were developed using the logistic regression algorithm. The clinical and radiomic signatures were integrated into a nomogram. The diagnostic performance of the models was evaluated using the area under the curve (AUC). Studies were scored according to the Radiomics Quality Score and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines. Results: The radiomics model achieved the best AUC values of 0.858 and 0.822 in the training and test cohort, respectively. Tumor size (T_size), solid tumor size (ST_size), consolidation-to-tumor ratio (CTR), years of smoking, CYFRA 21-1, and squamous cell carcinoma antigen were used to construct the clinical model. The clinical model achieved AUC values of 0.741 and 0.705 in the training and test cohort, respectively. The nomogram showed higher AUCs of 0.894 and 0.843 in the training and test cohort, respectively. Conclusion: This study has developed and validated a combined nomogram, a visual tool that integrates CT radiomics features with clinical indicators and serum tumor biomarkers. This innovative model facilitates the differentiation of micropapillary or solid components within lung adenocarcinoma and achieves a higher AUC, indicating superior predictive accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YU完成签到,获得积分10
16秒前
16秒前
18秒前
谦让初晴发布了新的文献求助10
22秒前
22秒前
SCI的芷蝶完成签到 ,获得积分10
26秒前
32秒前
sjren_082022完成签到,获得积分10
35秒前
Lucas应助谦让初晴采纳,获得10
41秒前
50秒前
sjren_082022发布了新的文献求助10
52秒前
zzmm发布了新的文献求助10
54秒前
研友_VZG7GZ应助zzmm采纳,获得10
1分钟前
1分钟前
瘦瘦的枫叶完成签到 ,获得积分10
1分钟前
1分钟前
谦让初晴发布了新的文献求助10
1分钟前
Suraim完成签到,获得积分10
1分钟前
2分钟前
2分钟前
qianzhihe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
谦让初晴完成签到,获得积分20
2分钟前
2分钟前
zzmm发布了新的文献求助10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
思源应助zzmm采纳,获得10
3分钟前
zzmm完成签到,获得积分10
3分钟前
xliiii完成签到,获得积分10
3分钟前
正直的夏真完成签到 ,获得积分10
3分钟前
aaa发布了新的文献求助10
3分钟前
harri完成签到,获得积分10
3分钟前
李健的小迷弟应助小宇子采纳,获得10
4分钟前
4分钟前
小宇子发布了新的文献求助10
4分钟前
柚子完成签到 ,获得积分10
4分钟前
aaa完成签到,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5829068
求助须知:如何正确求助?哪些是违规求助? 6040389
关于积分的说明 15576046
捐赠科研通 4948665
什么是DOI,文献DOI怎么找? 2666382
邀请新用户注册赠送积分活动 1611988
关于科研通互助平台的介绍 1567041