Oxygen-dislocation interaction-mediated nanotwinned nanomartensites in ultra-strong and ductile titanium alloys

材料科学 位错 脆化 延展性(地球科学) 冶金 合金 间质缺损 钛合金 成核 复合材料 兴奋剂 蠕动 热力学 光电子学 物理
作者
Chongle Zhang,Xuanzhe Li,Suzhi Li,Jinyu Zhang,Jiao Li,Gang Liu,Jun Sun
出处
期刊:Materials Today [Elsevier]
卷期号:75: 85-96 被引量:41
标识
DOI:10.1016/j.mattod.2024.04.003
摘要

High specific-strength lightweight titanium (Ti) alloys, in the absence of interstitial strengthening of oxygen (O) atoms to avoid O-embrittlement, are mainly strengthened via densely semi-coherent nanoprecipitates in the β-matrix that act as dislocation obstacles and often result in high-stress concentrations, contributing to their strength-ductility trade-off. Here, using a low cost Ti-2.8Cr-4.5Zr-5.2Al duplex alloy as a model material, we present a counterintuitive O-doping strategy to create topologically coherent, interstitial-O α′ nanotwinned nanomartensites (NTNMs) with good interfacial strain compatibilities. The interstitial atoms tailor the stress field of edge dislocation cores from planar to non-planar, facilitating multiple variants nucleate simultaneously along O-rich edge dislocations to construct interstitial-O NTNMs. The interstitial-O NTNMs endow our duplex Ti alloys with superior strength of 1.64 gigapascals and large uniform elongation of 11.5%, surpassing all previously reported bulk Ti alloys. This unprecedented combination of mechanical properties is conferred mainly by the interstitial NTNMs, which serve as a sustainable ductility source via a self-hardening deformation mechanism and utilize the pronounced interstitial strengthening of concentrated O atoms. As such, the coherent interstitial NTNMs engineering strategy efficiently combines interstitial solid solution strengthening, and coherent interface strengthening mechanisms, that provides new insights into designing high-strength and large ductility O-tolerant alloys for cost-effective and lightweight applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
科研通AI6.1应助Jayqwq采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
852应助牧谷采纳,获得10
4秒前
不吃橘子发布了新的文献求助10
4秒前
Y_Y发布了新的文献求助10
5秒前
领导范儿应助拼搏君浩采纳,获得10
6秒前
6秒前
一杯加柠发布了新的文献求助10
6秒前
7秒前
SILENCE发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
叮咚发布了新的文献求助10
9秒前
10秒前
小马甲应助缥缈的青旋采纳,获得10
10秒前
11秒前
慕文颜雨发布了新的文献求助30
11秒前
11秒前
小李发布了新的文献求助10
12秒前
不吃橘子完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
大气觅海发布了新的文献求助10
13秒前
牧谷发布了新的文献求助10
13秒前
15秒前
慕青应助无情飞薇采纳,获得10
15秒前
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
han完成签到,获得积分10
17秒前
17秒前
17秒前
wenwen发布了新的文献求助10
17秒前
拼搏君浩发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805744
求助须知:如何正确求助?哪些是违规求助? 5851787
关于积分的说明 15517201
捐赠科研通 4930969
什么是DOI,文献DOI怎么找? 2654883
邀请新用户注册赠送积分活动 1601639
关于科研通互助平台的介绍 1556735