Mechanisms of microstructural evolution in high-volume TiC reinforced steel composites: Insights into particle coarsening, morphology, and thermochemical reactions

材料科学 微观结构 碳化物 珠光体 复合材料 粒子(生态学) 碳化钛 化学计量学 结构材料 形态学(生物学) 冶金 奥氏体 海洋学 地质学 生物 有机化学 化学 遗传学
作者
Jung Hwan Kim,Ji-Hye Lee,Byeongjin Park,Taegyu Lee,Kyung-Min Yoo,Chan‐Yeup Chung,Hansang Kwon,In‐Ho Jung,Sang‐Bok Lee,Sang‐Kwan Lee,Seungchan Cho
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:30: 5286-5299 被引量:8
标识
DOI:10.1016/j.jmrt.2024.04.210
摘要

Titanium carbides reinforced steel matrix (TiC-steel) composites exhibit a range of excellent properties, including increased strength-to-weight ratio, high-temperature strength, and outstanding wear resistance. Prior research has demonstrated that the mechanical properties of TiC-steel composites are significantly affected by particle coarsening and the associated core-rim structure. Nevertheless, the fundamental mechanisms of thermochemical reactions that govern the formation of the final microstructure in these composites, including the core-rim structure, remain incompletely explored. This study elucidates the microstructure evolution mechanism of high-volume TiC-steel composites, particularly particle coarsening, through thermodynamic calculations and chemical analysis. The investigation unveils the coarsening process, shedding light on the formation of more stable phases and associated compositional changes, including the incorporation of substitutional elements and carbon depletion (resulting in low stoichiometry, x < 1) within the newly developed (Ti,M)Cx. Additionally, the increased carbon content contributes to pearlite emergence within the steel matrix. Notably, key factors influencing the distinct morphologies observed in growing TiC particles are identified, attributed to variations in Mo, V, and W concentrations, as elucidated by rigorous thermodynamic and first-principles calculations. This study represents significant progress in understanding the intricate microstructure development of high-volume TiC-steel composites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助反方向的钟采纳,获得10
刚刚
刚刚
云龙应助lvyi采纳,获得30
2秒前
zx666发布了新的文献求助10
2秒前
王小可发布了新的文献求助20
2秒前
轻松凌柏完成签到 ,获得积分10
2秒前
4秒前
llllliu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
minami64发布了新的文献求助10
6秒前
科科完成签到 ,获得积分10
6秒前
bzlish发布了新的文献求助10
7秒前
8秒前
雨天完成签到,获得积分10
9秒前
9秒前
Muxi发布了新的文献求助20
11秒前
杨念一完成签到,获得积分10
11秒前
77发布了新的文献求助10
12秒前
仲谋发布了新的文献求助30
12秒前
深情安青应助欢呼宛秋采纳,获得10
12秒前
科研通AI6应助bzlish采纳,获得10
12秒前
共享精神应助bzlish采纳,获得10
12秒前
在水一方应助bzlish采纳,获得10
12秒前
14秒前
英俊冰岚完成签到 ,获得积分10
14秒前
闵夏完成签到,获得积分10
14秒前
杨好圆完成签到,获得积分10
15秒前
16秒前
18秒前
18秒前
kipo发布了新的文献求助10
19秒前
20秒前
鳗鱼道天发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
22秒前
丰富稀完成签到,获得积分20
22秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642756
求助须知:如何正确求助?哪些是违规求助? 4759612
关于积分的说明 15018685
捐赠科研通 4801257
什么是DOI,文献DOI怎么找? 2566565
邀请新用户注册赠送积分活动 1524558
关于科研通互助平台的介绍 1484100