清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Survival outcome prediction of breast carcinomas on whole-slide histopathology images using deep learning.

医学 组织病理学 乳腺癌 病理 放射科 肿瘤科 内科学 癌症
作者
Julian Paul,Céline Bossard,Joseph Rynkiewicz,F. Molinié,Sanae Salhi,Jean‐Sébastien Frenel,Yahia Salhi,Jérôme Chetritt
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:42 (16_suppl): 1070-1070 被引量:1
标识
DOI:10.1200/jco.2024.42.16_suppl.1070
摘要

1070 Background: Breast cancer is the most common cancer among women with 2 million new cases and 627,000 deaths in 2020. Early diagnosis and effective treatment are crucial for improved outcomes. Prognosis mainly depends on histopathological features, among them grade. As whole slide histopathology image (WSI) of tumor tissue contains a huge amount of hidden morphological features unexploited by pathologists, we investigate the potential of Artificial Intelligence (AI)-based analysis on WSI to predict prognosis in terms of 5-year overall survival in breast cancer patients. Methods: We used a novel deep neural network (DNN), DiaDeepBreastPRS, designed specifically for predicting a survival risk score in breast cancer patients based on H&E-stained whole slide images (WSI) of tumor tissues. The model incorporates two distinct viewpoints, one capturing cellular details and the other the tissue-level information. DiaDeepBreastPRS was trained and evaluated on a multi-centric discovery cohort of 1,027 patients (1,095 H&E WSI) from the TCGA-BRCA dataset using a cross-testing and cross-validation technique. It was evaluated on an external cohort, comprising 232 patients (247 H&E WSI). A statistical analysis with a multivariate Cox regression model was carried out on clinico-pathological data. AI scores and the concordance index (c-index) serves as the metric for assessing the performance. The predicted risk scores were used for effective risk stratification of breast carcinomas. Results: On the TCGA-BRCA dataset, the model achieved an average c-index of 67%, which reaches 78% by adding the pTNM stage and age at diagnosis. On the external dataset, the model achieved a c-index of 66% and 75% when including some histopathological prognosis factors (pTNM stage, age at diagnosis, HER2 and HR status and mitosis). The AI score was independently associated with the survival of breast cancer patients with the highest hazard ratio (HR 2.46, p<0.005). Furthermore, the model was able to significantly discriminate between the 2 groups of patients, with a good and a poor prognosis in terms of overall survival (p<0.005). Conclusions: In this study, we showcased that the algorithm was able to instantly extract prognostic morphological features from H&E whole slide images (WSI) and could be included in the pathology report. This could potentially enhance clinical decision-making, elevating the standard of care. Compared to commonly used molecular signatures, the AI algorithm enables a reduction in response time and cost savings. However, further investigations using additional independent cohorts are essential to consolidate the algorithm's performance and allow its generalizability, establish its superiority over existing prognostic markers, and provide insights into its interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到,获得积分10
12秒前
整齐百褶裙完成签到 ,获得积分10
19秒前
jailbreaker完成签到 ,获得积分10
20秒前
huangzsdy完成签到,获得积分10
21秒前
24秒前
萨尔莫斯发布了新的文献求助10
29秒前
打打应助王博士采纳,获得10
32秒前
Ava应助萨尔莫斯采纳,获得10
45秒前
缥缈的闭月完成签到,获得积分10
45秒前
阳光的道消完成签到,获得积分10
52秒前
友好羊应助尤瑟夫采纳,获得30
54秒前
55秒前
王博士发布了新的文献求助10
58秒前
归尘应助科研通管家采纳,获得30
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
laber完成签到,获得积分10
1分钟前
小蘑菇应助王博士采纳,获得10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王博士发布了新的文献求助10
1分钟前
自律发布了新的文献求助10
1分钟前
1分钟前
萨尔莫斯发布了新的文献求助10
1分钟前
pjxxx完成签到 ,获得积分10
1分钟前
arsenal完成签到 ,获得积分10
1分钟前
susan完成签到 ,获得积分10
2分钟前
zhdjj完成签到 ,获得积分10
2分钟前
东风完成签到,获得积分10
2分钟前
英姑应助王博士采纳,获得10
2分钟前
jenningseastera应助萨尔莫斯采纳,获得10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
2分钟前
白桃乌龙完成签到,获得积分10
2分钟前
王博士发布了新的文献求助10
2分钟前
不倦应助萨尔莫斯采纳,获得10
2分钟前
naiyouqiu1989完成签到,获得积分10
2分钟前
九五式自动步枪完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226680
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732