Survival outcome prediction of breast carcinomas on whole-slide histopathology images using deep learning.

医学 组织病理学 乳腺癌 病理 放射科 肿瘤科 内科学 癌症
作者
Julian Paul,Céline Bossard,Joseph Rynkiewicz,F. Molinié,Sanae Salhi,Jean‐Sébastien Frenel,Yahia Salhi,Jérôme Chetritt
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): 1070-1070 被引量:1
标识
DOI:10.1200/jco.2024.42.16_suppl.1070
摘要

1070 Background: Breast cancer is the most common cancer among women with 2 million new cases and 627,000 deaths in 2020. Early diagnosis and effective treatment are crucial for improved outcomes. Prognosis mainly depends on histopathological features, among them grade. As whole slide histopathology image (WSI) of tumor tissue contains a huge amount of hidden morphological features unexploited by pathologists, we investigate the potential of Artificial Intelligence (AI)-based analysis on WSI to predict prognosis in terms of 5-year overall survival in breast cancer patients. Methods: We used a novel deep neural network (DNN), DiaDeepBreastPRS, designed specifically for predicting a survival risk score in breast cancer patients based on H&E-stained whole slide images (WSI) of tumor tissues. The model incorporates two distinct viewpoints, one capturing cellular details and the other the tissue-level information. DiaDeepBreastPRS was trained and evaluated on a multi-centric discovery cohort of 1,027 patients (1,095 H&E WSI) from the TCGA-BRCA dataset using a cross-testing and cross-validation technique. It was evaluated on an external cohort, comprising 232 patients (247 H&E WSI). A statistical analysis with a multivariate Cox regression model was carried out on clinico-pathological data. AI scores and the concordance index (c-index) serves as the metric for assessing the performance. The predicted risk scores were used for effective risk stratification of breast carcinomas. Results: On the TCGA-BRCA dataset, the model achieved an average c-index of 67%, which reaches 78% by adding the pTNM stage and age at diagnosis. On the external dataset, the model achieved a c-index of 66% and 75% when including some histopathological prognosis factors (pTNM stage, age at diagnosis, HER2 and HR status and mitosis). The AI score was independently associated with the survival of breast cancer patients with the highest hazard ratio (HR 2.46, p<0.005). Furthermore, the model was able to significantly discriminate between the 2 groups of patients, with a good and a poor prognosis in terms of overall survival (p<0.005). Conclusions: In this study, we showcased that the algorithm was able to instantly extract prognostic morphological features from H&E whole slide images (WSI) and could be included in the pathology report. This could potentially enhance clinical decision-making, elevating the standard of care. Compared to commonly used molecular signatures, the AI algorithm enables a reduction in response time and cost savings. However, further investigations using additional independent cohorts are essential to consolidate the algorithm's performance and allow its generalizability, establish its superiority over existing prognostic markers, and provide insights into its interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaopu发布了新的文献求助10
刚刚
浮游应助高大的未来采纳,获得10
1秒前
英姑应助烂漫夜梦采纳,获得30
1秒前
2秒前
狗十七发布了新的文献求助20
2秒前
无花果应助标致贞采纳,获得10
2秒前
4秒前
111完成签到 ,获得积分10
4秒前
deallyxyz完成签到,获得积分0
4秒前
范森林完成签到 ,获得积分10
4秒前
4秒前
万能图书馆应助物语采纳,获得10
5秒前
6秒前
高大的未来完成签到,获得积分10
6秒前
7秒前
周胜发布了新的文献求助10
7秒前
研友_8Y2DXL完成签到,获得积分10
7秒前
Lauren完成签到 ,获得积分10
8秒前
8秒前
慕青应助Dallas采纳,获得10
8秒前
8秒前
科研通AI6应助坦率灵槐采纳,获得10
9秒前
10秒前
小小怪下士完成签到,获得积分20
10秒前
xiaopu完成签到,获得积分10
12秒前
年轻的保温杯关注了科研通微信公众号
12秒前
13秒前
jjs发布了新的文献求助10
13秒前
sss发布了新的文献求助10
14秒前
拾三发布了新的文献求助10
14秒前
英姑应助霸气若男采纳,获得10
15秒前
jitianxing发布了新的文献求助10
15秒前
15秒前
ifast完成签到 ,获得积分10
15秒前
简单晓博完成签到,获得积分10
16秒前
17秒前
浮游应助don1990采纳,获得10
19秒前
求助人员发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460995
求助须知:如何正确求助?哪些是违规求助? 4566103
关于积分的说明 14303321
捐赠科研通 4491747
什么是DOI,文献DOI怎么找? 2460462
邀请新用户注册赠送积分活动 1449774
关于科研通互助平台的介绍 1425554