A Physics-Informed and Attention-Based Graph Learning Approach for Regional Electric Vehicle Charging Demand Prediction

电动汽车 图形 计算机科学 人工智能 物理 理论计算机科学 量子力学 功率(物理)
作者
Haohao Qu,H. H. Kuang,Qiuxuan Wang,Jun Li,Linlin You
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:4
标识
DOI:10.1109/tits.2024.3401850
摘要

Along with the proliferation of electric vehicles (EVs), optimizing the use of EV charging space can significantly alleviate the growing load on intelligent transportation systems. As the foundation to achieve such an optimization, a spatiotemporal method for EV charging demand prediction in urban areas is required. Although several solutions have been proposed by using data-driven deep learning methods, it can be that these performance-oriented approaches may struggle to correctly understand the underlying factors influencing charging demand, particularly charging prices. A representative case that highlights the challenge faced by existing methods is their potential misinterpretation of high prices during peak times, leading to an incorrect assumption that higher prices correspond to increased demand. To address the challenges associated with training an accurate and reliable prediction model for EV charging demand, this paper proposes a novel approach called PAG, which leverages the integration of graph and temporal attention mechanisms for effective feature extraction and introduces physics-informed meta-learning in the pre-training step to facilitate prior knowledge learning. Evaluation results on a dataset of 18,061 EV charging piles in Shenzhen, China, show that the proposed approach can achieve state-of-the-art forecasting performance and the ability to understand the adaptive changes in charging demands caused by price fluctuations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蛋疼先生发布了新的文献求助10
1秒前
1秒前
SYLH应助LXhong采纳,获得10
2秒前
4秒前
4秒前
重要的炳完成签到 ,获得积分10
4秒前
杨沛儒发布了新的文献求助10
4秒前
权志龙爱科研完成签到,获得积分10
6秒前
lcarus发布了新的文献求助10
7秒前
小二郎应助Diss采纳,获得10
8秒前
qqqq发布了新的文献求助10
11秒前
万能图书馆应助DrKe采纳,获得30
11秒前
13秒前
xdx关注了科研通微信公众号
13秒前
14秒前
16秒前
kkk发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
18秒前
张钦浩关注了科研通微信公众号
19秒前
20秒前
活泼的雁玉完成签到,获得积分20
21秒前
孙成成完成签到 ,获得积分10
21秒前
22秒前
科研通AI5应助XShu采纳,获得10
23秒前
开心尔芙发布了新的文献求助10
23秒前
打哈哈儿发布了新的文献求助10
24秒前
SYLH应助llx采纳,获得10
25秒前
不解释发布了新的文献求助10
25秒前
赘婿应助LXhong采纳,获得10
26秒前
28秒前
29秒前
31秒前
开心尔芙完成签到,获得积分10
31秒前
AURORA发布了新的文献求助10
32秒前
魁梧的鸿煊完成签到 ,获得积分10
33秒前
SYLH应助zhangzhuopu采纳,获得10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800724
求助须知:如何正确求助?哪些是违规求助? 3346137
关于积分的说明 10328389
捐赠科研通 3062617
什么是DOI,文献DOI怎么找? 1681025
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646