气味
感觉系统
人工智能
稳健性(进化)
感知
模式识别(心理学)
生物系统
计算机科学
机器学习
化学
心理学
认知心理学
生物
生物化学
基因
神经科学
有机化学
作者
Yuanxi Huang,Lingjun Bu,Kuan Huang,Huichun Zhang,Shiqing Zhou
标识
DOI:10.1021/acs.est.4c01763
摘要
Knowing odor sensory attributes of odorants lies at the core of odor tracking when addressing waterborne odor issues. However, experimental determination covering tens of thousands of odorants in authentic water is not pragmatic due to the complexity of odorant identification and odor evaluation. In this study, we propose the first machine learning (ML) model to predict odor perception/threshold aiming at odorants in water, which can use either molecular structure or MS2 spectra as input features. We demonstrate that model performance using MS2 spectra is nearly as good as that using unequivocal structures, both with outstanding accuracy. We particularly show the model's robustness in predicting odor sensory attributes of unidentified chemicals by using the experimentally obtained MS2 spectra from nontarget analysis on authentic water samples. Interpreting the developed models, we identify the intricate interaction of functional groups as the predominant influence factor on odor sensory attributes. We also highlight the important roles of carbon chain length, molecular weight, etc., in the inherent olfactory mechanisms. These findings streamline the odor sensory attribute prediction and are crucial advancements toward credible tracking and efficient control of off-odors in water.
科研通智能强力驱动
Strongly Powered by AbleSci AI