Toward Real Scenery: A Lightweight Tomato Growth Inspection Algorithm for Leaf Disease Detection and Fruit Counting

字节 BitTorrent跟踪器 温室 计算机科学 人工智能 像素 计算机视觉 实时计算 算法 计算机硬件 园艺 生物 眼动
作者
Rui Kang,Jiaxin Huang,Xuehai Zhou,Ni Ren,Shangpeng Sun
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:6 被引量:3
标识
DOI:10.34133/plantphenomics.0174
摘要

The deployment of intelligent surveillance systems to monitor tomato plant growth poses substantial challenges due to the dynamic nature of disease patterns and the complexity of environmental conditions such as background and lighting. In this study, an integrated cascade framework that synergizes detectors and trackers was introduced for the simultaneous identification of tomato leaf diseases and fruit counting. We applied an autonomous robot with smartphone camera to collect images for leaf disease and fruits in greenhouses. Further, we improved the deep learning network YOLO-TGI by incorporating Ghost and CBAM modules, which was trained and tested in conjunction with premier lightweight detection models like YOLOX and NanoDet in evaluating leaf health conditions. For the cascading with various base detectors, we integrated state-of-the-art trackers such as Byte-Track, Motpy, and FairMot to enable fruit counting in video streams. Experimental results indicated that the combination of YOLO-TGI and Byte-Track achieved the most robust performance. Particularly, YOLO-TGI-N emerged as the model with the least computational demands, registering the lowest FLOPs at 2.05 G and checkpoint weights at 3.7 M, while still maintaining a mAP of 0.72 for leaf disease detection. Regarding the fruit counting, the combination of YOLO-TGI-S and Byte-Track achieved the best R 2 of 0.93 and the lowest RMSE of 9.17, boasting an inference speed that doubles that of the YOLOX series, and is 2.5 times faster than the NanoDet series. The developed network framework is a potential solution for researchers facilitating the deployment of similar surveillance models for a broad spectrum of fruit and vegetable crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏州河发布了新的文献求助10
刚刚
1秒前
yiyizhou发布了新的文献求助10
1秒前
2秒前
蟲先生完成签到 ,获得积分0
2秒前
贾舒涵发布了新的文献求助10
2秒前
4秒前
6秒前
6秒前
7秒前
Xiaoxiao应助纯真若菱采纳,获得10
8秒前
菜一完成签到,获得积分20
8秒前
10秒前
11秒前
DDZZ完成签到,获得积分20
12秒前
苏州河发布了新的文献求助10
13秒前
安静牛排发布了新的文献求助10
15秒前
16秒前
北海未暖完成签到,获得积分10
16秒前
17秒前
ShiRz发布了新的文献求助10
17秒前
17秒前
xx发布了新的文献求助30
20秒前
20秒前
董咚咚发布了新的文献求助10
21秒前
21秒前
李科研发布了新的文献求助10
21秒前
研友_ZegWmL发布了新的文献求助10
24秒前
24秒前
25秒前
优雅代玉发布了新的文献求助10
25秒前
25秒前
28秒前
爆米花应助李科研采纳,获得10
28秒前
28秒前
28秒前
科目三应助理查德采纳,获得10
29秒前
文右三发布了新的文献求助10
30秒前
善学以致用应助xx采纳,获得10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787836
求助须知:如何正确求助?哪些是违规求助? 3333486
关于积分的说明 10261926
捐赠科研通 3049234
什么是DOI,文献DOI怎么找? 1673459
邀请新用户注册赠送积分活动 801949
科研通“疑难数据库(出版商)”最低求助积分说明 760428