Identification of Damage in Steel‒Concrete Composite Beams Based on Wavelet Analysis and Deep Learning

复合数 鉴定(生物学) 小波 结构工程 法律工程学 材料科学 工程类 计算机科学 人工智能 复合材料 植物 生物
作者
Chengpeng Zhang,Junfeng Shi,Caiping Huang
出处
期刊:Structural durability & health monitoring 卷期号:18 (4): 465-483 被引量:2
标识
DOI:10.32604/sdhm.2024.048705
摘要

In this paper, an intelligent damage detection approach is proposed for steel-concrete composite beams based on deep learning and wavelet analysis.To demonstrate the feasibility of this approach, first, following the guidelines provided by relevant standards, steel-concrete composite beams are designed, and six different damage incidents are established.Second, a steel ball is used for free-fall excitation on the surface of the steel-concrete composite beams and a low-temperature-sensitive quasi-distributed long-gauge fiber Bragg grating (FBG) strain sensor is used to obtain the strain signals of the steel-concrete composite beams with different damage types.To reduce the effect of noise on the strain signals, several denoising techniques are applied to process the collected strain signals.Finally, to intelligently identify the strain signals of combined beams with different damage types, multiple deep learning models are constructed to train and to predict strain signals as denoised and not denoised, allowing for damage classification and localization in steel-concrete composite beams.In this experimental context, residual network-50 (ResNet-50) achieved the highest average accuracy compared to that of the other deep learning models.The average accuracy of the un-denoised and denoised signals is 96.73% and 97.91%, respectively, and wavelet denoising improved the prediction accuracy of ResNet-50 by 1.18%.The strain-time domain signals collected by sensors located farther from the damage zone also contain information about the damage to the composite beam.The deep learning models effectively extract damage features.The results of this experiment demonstrate that the approach used in this paper enhances the intelligence of structural damage identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流萤之光发布了新的文献求助10
刚刚
柳香芦完成签到,获得积分10
刚刚
bubble发布了新的文献求助30
1秒前
1秒前
情怀应助leo瀚采纳,获得10
1秒前
Lucas应助哇哦采纳,获得10
2秒前
不吃香菜完成签到 ,获得积分10
2秒前
阿辉完成签到,获得积分10
2秒前
2秒前
这题不会完成签到,获得积分20
2秒前
典雅的思菱完成签到,获得积分10
3秒前
朱桂林完成签到,获得积分10
3秒前
tanghong完成签到,获得积分10
3秒前
小蒋完成签到 ,获得积分10
3秒前
幽默的小之完成签到,获得积分10
3秒前
学术的猹完成签到,获得积分10
4秒前
如意元霜完成签到 ,获得积分10
4秒前
mingming完成签到,获得积分20
4秒前
科研小白完成签到,获得积分20
4秒前
5秒前
饱满谷波完成签到,获得积分10
5秒前
CipherSage应助pumbaaxu采纳,获得10
5秒前
5秒前
nhsyb嘉发布了新的文献求助10
6秒前
7秒前
bjcyqz完成签到,获得积分10
7秒前
深情安青应助shunlu采纳,获得30
7秒前
幺幺发布了新的文献求助10
7秒前
Jennifer应助游大达采纳,获得10
8秒前
一小只柚子完成签到,获得积分10
8秒前
8秒前
这题不会发布了新的文献求助10
9秒前
星辰大海应助大鹏采纳,获得30
9秒前
震动的听安完成签到,获得积分10
9秒前
沉默小笼包完成签到 ,获得积分10
10秒前
pengyuLiu发布了新的文献求助20
10秒前
陈圈圈发布了新的文献求助10
10秒前
吕吕完成签到,获得积分10
10秒前
嘿嘿嘿完成签到,获得积分10
10秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885