清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine-learning-assisted design of high strength steel I-section columns

Boosting(机器学习) 范畴变量 梯度升压 支持向量机 机器学习 计算机科学 随机森林 人工智能 统计的 钢结构设计 结构工程 数学 工程类 统计
作者
Jinpeng Cheng,Xuelai Li,Ke Jiang,Shuai Li,Andi Su,Ou Zhao
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:308: 118018-118018 被引量:16
标识
DOI:10.1016/j.engstruct.2024.118018
摘要

High strength steel has been attracting attention in the building industry due to its superior mechanical properties. The accurate design of high strength steel structures is crucial to boost its wide application. In this paper, an accurate and unified design approach for high strength steel I-section columns with different material grades, boundary conditions, geometric dimensions (including cross-section sizes and member lengths) and failure modes is proposed based on machine learning. Firstly, 871 experimental and numerical data were collected from the literature to establish a database. Then, seven machine learning algorithms, including Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbour, Adaptive Boosting, Extreme Gradient Boosting and Categorical Boosting, were applied to establish machine learning regression models to predict buckling resistances of high strength steel I-section columns. The model performance was then evaluated through statistic indices, with the evaluation results indicating that the Categorical Boosting trained model yields the highest level of accuracy. Based on the data in the collected database, the regression model trained by Categorical Boosting and existing codified design provisions, as given in the European code and American specification, were assessed and compared. The European code and American specification were found to yield scattered and inaccurate failure load predictions, while the Categorical Boosting trained model led to substantially more accurate and consistent failure load predictions for high strength steel I-section columns with different material grades, boundary conditions, geometric dimensions and failure modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到 ,获得积分10
3秒前
sponge完成签到 ,获得积分10
5秒前
胡国伦完成签到 ,获得积分10
9秒前
orixero应助ivyjianjie采纳,获得10
12秒前
四喜完成签到 ,获得积分10
12秒前
sh1ro完成签到,获得积分10
15秒前
16秒前
超帅的白易完成签到 ,获得积分10
29秒前
31秒前
bioseraph发布了新的文献求助10
34秒前
zijingsy完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
43秒前
43秒前
511完成签到 ,获得积分10
44秒前
幽默滑板完成签到,获得积分10
50秒前
胡可完成签到 ,获得积分10
58秒前
李爱国应助科研通管家采纳,获得10
1分钟前
1分钟前
向雨竹完成签到,获得积分10
1分钟前
小肥啾发布了新的文献求助10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
章鱼小丸子完成签到 ,获得积分10
1分钟前
1分钟前
ivyjianjie发布了新的文献求助10
1分钟前
zhdjj完成签到 ,获得积分10
1分钟前
龙猫爱看书完成签到,获得积分10
1分钟前
MISA完成签到 ,获得积分10
1分钟前
1分钟前
ramsey33完成签到 ,获得积分10
2分钟前
玛琳卡迪马完成签到,获得积分10
2分钟前
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
bioseraph完成签到,获得积分10
2分钟前
2分钟前
Owen应助Lee采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
元元元贞完成签到 ,获得积分10
2分钟前
高分求助中
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4105893
求助须知:如何正确求助?哪些是违规求助? 3643835
关于积分的说明 11542796
捐赠科研通 3350946
什么是DOI,文献DOI怎么找? 1841179
邀请新用户注册赠送积分活动 907911
科研通“疑难数据库(出版商)”最低求助积分说明 825065