清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning and Image data-based surface cracks recognition of laser nitrided Titanium alloy

渗氮 材料科学 激光器 人工智能 钛合金 冶金 计算机科学 合金 复合材料 光学 图层(电子) 物理
作者
Muhammad Rizwan Awan,Chi-Wai Chan,Adrian Murphy,Dileep Kumar,Saurav Goel,Caroline McClory
出处
期刊:Results in engineering [Elsevier BV]
卷期号:22: 102003-102003 被引量:14
标识
DOI:10.1016/j.rineng.2024.102003
摘要

Laser nitriding, a high-precision surface modification process, enhances the hardness, wear resistance and corrosion resistance of the materials. However, laser nitriding process is prone to appearance of cracks when the process is performed at high laser energy levels. Traditional techniques to detect the cracks are time consuming, costly and lack standardization. Thus, this research aims to put forth deep learning-based crack recognition for the laser nitriding of Ti–6Al–4V alloy. The process of laser nitriding has been performed by varying duty cycles, and other process parameters. The laser nitrided sample has then been processed through optical 3D surface measurements (Alicona Infinite Focus G5), creating high resolution images. The images were then pre-processed which included 2D conversion, patchification, image augmentation and subsequent removal of anomalies. After preprocessing, the investigation focused on employing robust binary classification method based on CNN models and its variants, including ResNet-50, VGG-19, VGG-16, GoogLeNet (Inception V3), and DenseNet-121, to recognize surface cracks. The performance of these models has been optimized by fine tuning different hyper parameters and it is found that CNN base model along with models having less trainable parameters like VGG-19, VGG-16 exhibit better performance with accuracy of more than 98% to recognize cracks. Through the achieved results, it is found that VGG-19 is the most preferable model for this crack recognition problem to effectively recognize the surface cracks on laser nitrided Ti–6Al–4V material, owing to its best accuracy and lesser parameters compared to complex models like ResNet-50 and Inception-V3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ivyjianjie完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
16秒前
26秒前
量子星尘发布了新的文献求助10
42秒前
浩浩完成签到 ,获得积分10
49秒前
茹茹完成签到 ,获得积分10
55秒前
dollarpuff完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
游01完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
silin.li完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
善良的剑通发布了新的文献求助100
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
nick完成签到,获得积分10
2分钟前
Wen完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
王磊完成签到 ,获得积分10
2分钟前
蝎子莱莱xth完成签到,获得积分10
2分钟前
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
2分钟前
葛力发布了新的文献求助10
2分钟前
2分钟前
Square完成签到,获得积分10
2分钟前
善良的剑通发布了新的文献求助100
2分钟前
2分钟前
葫芦芦芦完成签到 ,获得积分10
2分钟前
2分钟前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
湖以完成签到 ,获得积分10
3分钟前
3分钟前
earthai完成签到,获得积分10
3分钟前
胖胖橘完成签到 ,获得积分10
3分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892479
求助须知:如何正确求助?哪些是违规求助? 3435216
关于积分的说明 10791582
捐赠科研通 3160194
什么是DOI,文献DOI怎么找? 1745422
邀请新用户注册赠送积分活动 842891
科研通“疑难数据库(出版商)”最低求助积分说明 786929