A Complex Gaussian Fuzzy Numbers-Based Multisource Information Fusion for Pattern Classification

计算机科学 模式识别(心理学) 人工智能 模糊逻辑 融合 高斯分布 高斯过程 模糊集 数据挖掘 数学 语言学 量子力学 物理 哲学
作者
Shengjia Zhang,Mingrui Yin,Fuyuan Xiao,Zehong Cao,Danilo Pelusi
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 3247-3259 被引量:11
标识
DOI:10.1109/tfuzz.2024.3352615
摘要

Uncertainty modeling and reasoning in intelligent systems are crucial for effective decision-making, such as complex evidence theory (CET) being particularly promising in dynamic information processing. Within CET, the complex basic belief assignment (CBBA) can model uncertainty accurately, while the complex rule of combination can effectively reason uncertainty with multiple sources of information, reaching a consensus.However, determining CBBA, as the key component of CET,remains an open issue. To mitigate this issue, we propose a novel method for generating CBBA using high-level features extracted from Box-cox transformation and discrete Fourier transform (DFT). Specifically, our method deploys complex Gaussian fuzzy number (CGFN) to generate CBBA, which provides a more accurate representation of information. The proposed method is applied to pattern classification tasks through a multisource information fusion algorithm, and it is compared with several well-known methods to demonstrate its effectiveness.Experimental results indicate that our proposed CGFN-based method outperforms existing methods, by achieving the highest average classification rate in multisource information fusion for pattern classification tasks. We found the Box-cox transformation contributes significantly to CGFN by formatting data in a normal distribution, and DFT can effectively extract high-level features.Our method offers a practical approach for generating CBBA in CET, precisely representing uncertainty and enhancing decision making in uncertain scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
广子发布了新的文献求助10
1秒前
wang发布了新的文献求助10
1秒前
白许四十完成签到,获得积分10
1秒前
1秒前
赵yy应助小香草采纳,获得10
1秒前
小羊发布了新的文献求助10
1秒前
好蓝发布了新的文献求助10
1秒前
Paperduoduo完成签到,获得积分10
1秒前
今后应助zoey采纳,获得10
2秒前
张志杰发布了新的文献求助10
2秒前
3秒前
Lynn发布了新的文献求助10
3秒前
kkk发布了新的文献求助10
3秒前
Anna完成签到,获得积分10
3秒前
小短腿飞行员完成签到,获得积分10
4秒前
莎莎完成签到,获得积分20
4秒前
4秒前
华仔应助周一一采纳,获得10
5秒前
5秒前
Lucas应助kakakaku采纳,获得10
5秒前
郭磊发布了新的文献求助10
5秒前
surain发布了新的文献求助10
5秒前
今后应助女爰舍予采纳,获得10
5秒前
奎奎完成签到 ,获得积分10
5秒前
十一发布了新的文献求助10
6秒前
6秒前
清淮发布了新的文献求助10
6秒前
木槿发布了新的文献求助10
6秒前
领导范儿应助Ran采纳,获得10
7秒前
7秒前
Lucas应助000采纳,获得10
7秒前
壮观可仁发布了新的文献求助10
8秒前
8秒前
9秒前
Orange应助蔡蔡蔡采纳,获得10
9秒前
JamesPei应助小羊采纳,获得10
9秒前
9秒前
Lucky完成签到,获得积分10
10秒前
lixiang发布了新的文献求助10
10秒前
吴Sehun完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454