亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defect Detection of Cell Phone Screen Using a Faster Regional Convolutional Neural Network with Multi-head Attention Mechanism

卷积神经网络 计算机科学 电话 机制(生物学) 主管(地质) 人工智能 模式识别(心理学) 地质学 物理 哲学 语言学 量子力学 地貌学
作者
Shuhui Yang Dayong Yu
标识
DOI:10.52783/jes.1618
摘要

Since the glass outer screen of a cell phone is the main sensory part of the human eye when using a cell phone, the advantages and disadvantages of the cell phone screen directly affect people's sense of use. Therefore, the defect detection requirements for cell phone screens are high and need to meet the needs of high-volume factory inspection. Most of the traditional defect detection methods use visual methods, the detection results are overly dependent on the subjectivity and experience of workers, the efficiency of this method is low, and the accuracy is poor. Currently, machine learning-based detection methods are applied in numerous industries. In this paper, a faster Regional Convolutional Neural Network (R-CNN) with multi-head attention mechanism for defect detection of cell phone screen is proposed. To enhance the network's capability in extracting feature information, a four-head attention mechanism is added to the last convolutional layer of the ResNet50 network. An improved Region of Interest (ROI) Align is proposed to replace the original ROI Pooling to reduce the localization error of cell phone screen defects. Replace the original Rectified Linear Unit (ReLU) activation function with the Copy Exponential Linear Unit (CELU) activation function to expedite the convergence capability of the network. Finally, by comparing with other classical model training, the evaluation results indicate that the proposed method achieved an average accuracy of 95.71%, which is a 5.34% improvement compared to the original faster R-CNN network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘雪完成签到 ,获得积分10
2秒前
面包还是盼盼好关注了科研通微信公众号
4秒前
CipherSage应助jasonjiang采纳,获得30
4秒前
丘比特应助Vision820采纳,获得10
21秒前
傲娇而又骄傲完成签到 ,获得积分10
30秒前
Estrella应助Qiaoguliang采纳,获得10
35秒前
chen完成签到,获得积分10
36秒前
39秒前
小布发布了新的文献求助10
44秒前
Galri完成签到 ,获得积分10
49秒前
田様应助小布采纳,获得10
50秒前
NexusExplorer应助St采纳,获得10
52秒前
遇上就这样吧应助moyaya采纳,获得60
57秒前
111完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
jasonjiang发布了新的文献求助30
1分钟前
Vision820发布了新的文献求助10
1分钟前
Tim完成签到 ,获得积分10
1分钟前
王某人完成签到 ,获得积分10
1分钟前
1分钟前
ZaZa完成签到,获得积分10
1分钟前
丿夜幕灬降临丨完成签到,获得积分10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
OCDer应助科研通管家采纳,获得100
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
寒玉完成签到,获得积分10
1分钟前
所所应助suer采纳,获得10
1分钟前
优秀的dd完成签到 ,获得积分10
1分钟前
烟花应助Vision820采纳,获得10
2分钟前
2分钟前
2分钟前
luogrou发布了新的文献求助10
2分钟前
TongKY完成签到 ,获得积分10
2分钟前
2分钟前
奋斗的觅山完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833707
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492227
捐赠科研通 3095719
什么是DOI,文献DOI怎么找? 1704674
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792