Research on fault diagnosis of rolling bearing based on improved convolutional neural network with sparrow search algorithm

过度拟合 支持向量机 卷积神经网络 计算机科学 人工智能 人工神经网络 机器学习 Softmax函数 规范化(社会学) 断层(地质) 模式识别(心理学) 算法 数据挖掘 地质学 社会学 人类学 地震学
作者
Min Wan,Yujie Xiao,Jingran Zhang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (4) 被引量:1
标识
DOI:10.1063/5.0192639
摘要

Traditional approaches to the intelligent fault diagnosis of rolling bearings have predominantly relied on manual expertise for feature extraction, a practice that compromises robustness. In addition, the existing convolutional neural network (CNN) is characterized by an overabundance of parameters and a substantial requirement for training samples. To address these limitations, this study introduces a novel fault diagnosis algorithm for rolling bearings, integrating a one-dimensional convolutional neural network (1DCNN) with a support vector machine (SVM) to form an enhanced 1DCNN-SVM model. This model is further refined using the sparrow search algorithm (SSA) for the optimal adjustment of the parameters of 1DCNN-SVM. Specifically, by substituting the CNN's final softmax layer with an SVM, the model becomes better suited for processing limited data volumes. In addition, the incorporation of batch normalization and dropout layers within the CNN framework significantly augments its fault classification accuracy for rolling bearings, concurrently mitigating the risk of overfitting. The SSA is subsequently applied to refine three principal hyper-parameters: batch size, initial learning rate, and the L2 regularization coefficient, thereby overcoming the challenges associated with manually adjusting parameters, such as extended processing times and unpredictable outcomes. Empirical tests on Case Western Reserve University (CWRU) datasets revealed the model's superior performance, with the SSA-optimized 1DCNN-SVM showcasing diagnostic accuracies over 98%, marked improvements over conventional models, and a significant reduction in processing times. This method not only marks a significant advancement in intelligent fault diagnosis for rolling bearings but also demonstrates the potential of integrating machine learning for more precise and efficient diagnostics. The SSA-1DCNN-SVM model, optimized for accuracy and minimal data use, sets a new standard in fault diagnosis, relevant for machinery health monitoring and maintenance strategies across various industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyang完成签到,获得积分10
刚刚
。。。发布了新的文献求助10
1秒前
缥缈的背包完成签到,获得积分10
1秒前
nicky完成签到 ,获得积分10
1秒前
1秒前
cc完成签到 ,获得积分10
1秒前
暖羊羊Y完成签到 ,获得积分10
2秒前
Prudence完成签到,获得积分10
2秒前
樱桃完成签到,获得积分10
2秒前
00完成签到 ,获得积分10
4秒前
4秒前
十七完成签到 ,获得积分10
4秒前
ywindm完成签到,获得积分10
5秒前
皇甫瑾瑜发布了新的文献求助10
6秒前
十八完成签到 ,获得积分10
7秒前
冷傲菠萝完成签到 ,获得积分10
7秒前
黑球发布了新的文献求助10
7秒前
逍遥自在完成签到,获得积分10
8秒前
香蕉觅云应助Wang采纳,获得10
8秒前
LL完成签到 ,获得积分10
8秒前
CoCo完成签到 ,获得积分10
8秒前
zxt完成签到,获得积分10
8秒前
WYXXXX发布了新的文献求助50
8秒前
而当下的完成签到,获得积分10
9秒前
韶邑完成签到,获得积分10
9秒前
竹筏过海应助z123采纳,获得30
9秒前
李健的小迷弟应助可研采纳,获得10
12秒前
无语的断缘完成签到,获得积分10
12秒前
13秒前
不会学习的小郭完成签到 ,获得积分10
13秒前
13秒前
害怕的听筠完成签到,获得积分10
13秒前
无相完成签到 ,获得积分10
17秒前
yy完成签到,获得积分10
17秒前
Gj发布了新的文献求助10
19秒前
达克赛德发布了新的文献求助10
19秒前
20秒前
加载文献别卡了完成签到,获得积分10
21秒前
。。。完成签到,获得积分10
21秒前
紫沫完成签到,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784865
求助须知:如何正确求助?哪些是违规求助? 3330123
关于积分的说明 10244465
捐赠科研通 3045505
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759557